首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Hafnium oxide (HfO2) films were deposited on Si substrates with a pre-grown oxide layer using hafnium chloride (HfCl4) source by surface sol-gel process, then ultrathin (HfO2)x(SiO2)1−x films were fabricated due to the reaction of SiO2 layer with HfO2 under the appropriate reaction-anneal treatment. The observation of high-resolution transmission electron microscopy indicates that the ultrathin films show amorphous nature. X-ray photoelectron spectroscopy analyses reveal that surface sol-gel derived ultrathin films are Hf-Si-O alloy instead of HfO2 and pre-grown SiO2 layer, and the composition was Hf0.52Si0.48O2 under 500 °C reaction-anneal. The lowest equivalent oxide thickness (EOT) value of 0.9 nm of film annealed at 500 °C has been obtained with small flatband voltage of −0.31 V. The experimental results indicate that a simple and feasible solution route to fabricate (HfO2)x(SiO2)1−x composite films has been developed by means of combination of surface sol-gel and reaction-anneal treatment.  相似文献   

2.
In this paper we report on electrical demonstration of thermally stable Ni silicides. It has been shown that when a sacrificial Si1−xCx epilayer is grown in the source-drain areas of NMOS transistors prior to silicidation, Ni silicides can withstand a 30 min anneal at 750 °C and demonstrate excellent electrical performance. We have observed carbon segregation at the NiSiC/Si1−xCx interface which can explain the increased NiSiC thermal stability. We have experimentally demonstrated feasibility of CMOS device implementation of thermally stable Ni silicides.  相似文献   

3.
Interfacial microstructure and electrical properties of HfAlOx films deposited by RF magnetron sputtering on compressively strained Si83Ge17/Si substrates were investigated. HfSiOx-dominated amorphous interfacial layer (IL) embedded with crystalline HfSix nano-particles were revealed by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy depth profile study. About 280 mV-wide clockwise capacitance-voltage(C-V) hysteresis for the HfAlOx film deposited in Ar + N2 mixed ambient was observed. Oxygen vacancies and interfacial defects in the HfSiOx IL, as well as trapped charges in the boundaries between the HfSix nano-particles and surrounded amorphous HfSiOx may be responsible for the large C-V hysteresis.  相似文献   

4.
Si1−xGex nanocrystals (NCs), embedded in Al2O3 matrix, were fabricated on Si (100) substrates by RF-magnetron sputtering technique with following annealing procedure at 800 °C, in nitrogen atmosphere. The presence of Si1−xGex NCs was confirmed by grazing incidence X-ray diffraction (GIXRD), grazing incidence small angle X-ray scattering (GISAXS) and Raman spectroscopy. The influence of the growth conditions on the structural properties and composition of Si1−xGex NCs inside the alumina matrix was analyzed. Optimal conditions to grow Si1−xGex (x∼ 0.8) NCs sized between 3 and 4 nm in Al2O3 matrix were established.  相似文献   

5.
The Pb(Zr0.20Ti0.80)O3/(Pb1−xLax)Ti1−x/4O3 (x = 0, 0.10, 0.15, 0.20) (PZT/PLTx) multilayered thin films were in situ deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering technique with a PbOx buffer layer. With this method, all PZT/PLTx multilayered thin films possess highly (1 0 0) orientation. The PbOx buffer layer leads to the (1 0 0) orientation of the multilayered thin films. The effect of the La content in PLTx layers on the dielectric and ferroelectric properties of the PZT multilayered thin films was systematically investigated. The enhanced dielectric and ferroelectric properties are observed in the PZT/PLTx (x = 0.15) multilayered thin films. The dielectric constant reaches maximum value of 365 at 1 KHz for x = 0.15 with a low loss tangent of 0.0301. Along with enhanced dielectric properties, the multilayered thin films also exhibit large remnant polarization value of 2Pr = 76.5 μC/cm2, and low coercive field of 2Ec = 238 KV/cm.  相似文献   

6.
The identification of a nontrigonal Ge dangling bond at SiO2/Si1−xGex/SiO2 heterostructures and its electrical activity are discussed, both from experimental and theoretical points of view. This dangling bond is observed from multifrequency electron-spin resonance experiments performed at 4.2 K, for typical Ge concentrations in the range 0.4 ≤ x ≤ 0.85. The electrical activity of this defect is revealed from capacitance-voltage characteristics measured at 300 and 77 K, and is found to behave like an acceptor defect. First-principles calculations of the electronic properties of this Ge dangling bond indicate that its energy level approaches the valence band edge of the Si1−xGex layer as the Ge content increases, confirming its acceptor-like nature.  相似文献   

7.
Ultra thin HfAlOx high-k gate dielectric has been deposited directly on Si1−xGex by RF sputter deposition. The interfacial chemical structure and energy-band discontinuities were studied by using X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (TOF-SIMS) and electrical measurements. It is found that the sputtered deposited HfAlOx gate dielectric on SiGe exhibits excellent electrical properties with low interface state density, hysteresis voltage, and frequency dispersion. The effective valence and conduction band offsets between HfAlOx (Eg = 6.2 eV) and Si1−xGex (Eg = 1.04 eV) were found to be 3.11 eV and 2.05 eV, respectively. In addition, the charge trapping properties of HfAlOx/SiGe gate stacks were characterized by constant voltage stressing (CVS).  相似文献   

8.
The study concerns the CNx thin films deposited by Low Pressure Hot Target Reactive Magnetron Sputtering (LP-HTRMS). The thin film resistance changes with relative humidity (RH) and optical properties have been studied in the range of 300-653 K. The temperature coefficients of resistivity changes were −2.5%/K at 300 K and −0.5%/K at 500 K. The activation energy of conductivity Eρ was found to be 0.21 eV in the case of unannealed sample and 0.44 eV when the sample was annealed at 653 K. The CNx thin films fastness to light was tested in the range of 200-2500 nm by measuring their transmittance. The calculations of absorption carrying out with Tauc formula proved the dominance of indirect optical transitions with Eg energy of 1.04 eV and direct transitions of Eg 2.05 eV. The UV radiation was fully absorbed and light transmission was ca. 90% in the range from visible radiation to far infrared of 1000-2500 nm. The CNx thin films showed the high resistance sensitivity to RH changes. At T = 300 K resistance changed from 882 M Ω for 36% RH to 386 k Ω for 85% RH. The CNx thin films susceptibility to humidity was observed in case of both DC and AC current (100 Hz to 10 kHz) measurements. The Si3N4 or SiC buffer adhesive layer was incorporated between CNx film and substrate and its influence on CNx electrical properties was observed.  相似文献   

9.
In this study the metal-semiconductor-metal (MSM) structure ultraviolet (UV) photodetectors (PDs) based on MgxZn1−xO thin films were fabricated. The MgxZn1−xO thin films were grown on glass substrates by sol-gel method. The results show that the optical absorption has a blue shift and higher transmittance with increasing Mg dopant. The optical band gap were modified by 3.28-3.52 eV, which corresponded to x = 0 and x = 0.16. For a 10 V applied bias, the dark currents of the MgxZn1−xO MSM-PDs were 637 nA (x = 0) to 0.185 nA (x = 0.16) and showed good Schottky contacts. This UV-visible rejection ratio of the MgxZn1−xO UV PDs at x = 0, 0.16, 0.21 and 0.33 were 18.82, 35.36, 40.91 and 42.92, respectively.  相似文献   

10.
Ta2O5 films with a buffer layer of silicon nitride of various thicknesses were deposited on Si substrate by reactive sputtering and submitted to annealing at 700 °C in nitrogen atmosphere. The microstructure and the electrical properties of thin films were studied. It was found that with a buffer layer of silicon nitride the electrical properties of SixNy/Ta2O5 film can be improved than Ta2O5 film. When the thickness of the buffer layer was 3 nm, the SixNy/Ta2O5 film has the highest dielectric constant of 27.4 and the lowest leakage current density of 4.61 × 10−5 A/cm2 (at −1 V). For the SixNy (3 nm)/Ta2O5 film, the conduction mechanism of leakage current was also analyzed and showed four types of conduction mechanisms at different applied voltages.  相似文献   

11.
HfTaxOy high-k dielectric layers with different compositions were deposited using ALD on 1 nm SiO2 generated by ozone based cleaning of 200 mm Si(1 0 0) surface. Physical characterization of blanket layers and C-V mapping demonstrates that the ALD layers have excellent uniformity and controllable compositions. The layers with a composition of HfTaO5.5 remain amorphous after annealing at 900 °C. The C-V measurements of MOS capacitors show no hysteresis, negligible frequency dispersion and interfacial state density smaller than 3 × 1011 (cm−2 eV−1). k-value of the amorphous layers varies in the range from 20 to 25, depending on layer composition. The flat band voltage does not shift with the increase of EOT, implying that the effect of fixed charge densities in the layers is negligible. The I-V measurements show a leakage reduction comparable to that of the ALD HfO2 layers.  相似文献   

12.
Low-temperature Si barrier growth with atomically flat heterointerfaces was investigated in order to improve negative differential conductance (NDC) characteristics of high-Ge-fraction strained Si1−xGex/Si hole resonant tunneling diode with nanometer-order thick strained Si1−xGex and unstrained Si layers. Especially to suppress the roughness generation at heterointerfaces for higher Ge fraction, Si barriers were deposited using Si2H6 reaction at a lower temperature of 400 °C instead of SiH4 reaction at 500 °C after the Si0.42Ge0.58 growth. NDC characteristics show that difference between peak and valley currents is effectively enhanced at 11-295 K by using Si2H6 at 400 °C, compared with that using SiH4 at 500 °C. Non-thermal leakage current at lower temperatures below 100 K tends to increase with decrease of Si barrier thickness. Additionally, thermionic-emission dominant characteristics at higher temperatures above 100 K suggests a possibility that introduction of larger barrier height (i.e. larger band discontinuity) enhances the NDC at room temperature by suppression of thermionic-emission current.  相似文献   

13.
In this study, we used nanoscratch techniques under a ramping load to evaluate the abrasive wear of Zn1−xMnxO epilayers (0 ? x ? 0.16) grown through molecular beam epitaxy (MBE) on sapphire substrates. We analyzed the surface roughness and damage using atomic force microscopy (AFM) and nanoindenter techniques. The scratched surfaces of the Zn1−xMnxO epilayers were significantly different for the various Mn compositions. AFM imaging of the Zn1−xMnxO films revealed that pileup phenomena were important on both sides of each scratch. During the scratching process, we found that cracking dominated in the case of Zn1−xMnxO films while ploughing; also we observed lower values of the coefficient of friction and shallower penetration depths for the films upon increasing the Mn content (x) from 0 to 0.16, suggesting that higher Mn contents provided the Zn1−xMnxO epilayers with higher shear resistances, enhanced by the presence of MnO bonds.  相似文献   

14.
This study investigates the temperature dependence of the current-voltage (I-V) characteristics of n-MgxZn1−xO/p-GaN junction diodes. The n-MgxZn1−xO films were deposited on p-GaN using a radio-frequency (rf) magnetron sputtering system followed by annealing at 500, 600, 700, and 800 °C in nitrogen ambient for 60 s, respectively. The n-MgxZn1−xO/p-GaN diode at a substrate temperature of 25 °C had the lowest leakage current in reverse bias. However, the leakage current of the diodes increased with an increase in annealing temperatures. The temperature sensitivity coefficients of the I-V characterizations were obtained at different substrate temperatures (25, 50, 75 100, and 125 °C) providing extracted values of 26.4, 27.2, 17.9, and 0.0 mV/°C in forward bias and 168.8, 143.4, 84.6, and 6.4 mV/°C in reverse bias, respectively. The n-MgxZn1−xO/p-GaN junction diode fabricated with MgxZn1−xO annealed at 800 °C demonstrated the lowest temperature dependence. Based on these findings, the n-MgxZn1−xO/p-GaN junction diode is feasible for GaN-based heterojunction bipolar transistors (HBTs).  相似文献   

15.
We report on high-k TixSi1−xO2 thin films prepared by RF magnetron co-sputtering using TiO2 and SiO2 targets at room temperature. The TixSi1−xO2 thin films exhibited an amorphous structure with nanocrystalline grains of 3-30 nm having no interfacial layers. The XPS analyses indicate that stoichiometric TiO2 phases in the TixSi1−xO2 films increased due to stronger Ti-O bond with increasing TiO2 RF powers. In addition, the electrical properties of the TixSi1−xO2 films became better with increasing TiO2 RF powers, from which the maximum value of the dielectric constant was estimated to be ∼30 for the samples with TiO2 RF powers of 200 and 250 W. The transmittance of the TixSi1−xO2 films was above 95% with optical bandgap energies of 4.1-4.2 eV. These results demonstrate a potential that the TixSi1−xO2 thin films were applied to a high-k gate dielectric in transparent thin film transistors as well as metal-oxide-semiconductor field-effect transistors.  相似文献   

16.
In this work, we report on the successfully growing Hg1−xMnxSe bulk crystals using a mixed, travelling heater method and Bridgman method, two-step procedure. Firstly, and with the aim of reducing Hg high pressure related to the high temperature synthesis reaction between the components in elemental form, HgSe crystals were synthesized and grown by the cold travelling heater method. Secondly, previously sublimated Mn and Se were incorporated to complete the desired composition. Then, the Bridgman growth was carried out by heating the alloy at a temperature of about 880 °C and lowering it at rate of 1 mm/h through a gradient of 25 °C/cm. The Hg1−xMnxSe crystals were characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffractometry, Fourier transform infrared spectroscopy and magnetic susceptibility measurements. The summary of the experimental results allows us to be optimistic with the potential of Hg1−xMnxSe as regards using Hg1−xMnxTe and Hg1−xCdxTe for infrared photodetection.  相似文献   

17.
Self-assembled GexSi1−x islands were grown on Si(0 0 1) substrates by solid source molecular beam epitaxy. Two different morphological shapes with different sizes were evolved by tuning the growth time at a constant deposition temperature. Micro-Raman analysis was carried out to investigate the composition, intermixing and strain of resultant islands. The observed broad infra-red photoluminescence signal from grown samples was associated with radiative recombination of holes confined in the Ge islands and electrons localized in the Si buffer layer. The PL peak position and intensity were found to be influenced by the islands size and intermixing of Si and Ge. The electrical properties of the islands were studied through photoexcited I-V characteristics and current imaging using conducting mode atomic force microscopy.  相似文献   

18.
In this work, we present the results of dielectric relaxation and defect generation kinetics towards reliability assessments for Zr-based high-k gate dielectrics on p-Ge (1 0 0). Zirconium tetratert butoxide (ZTB) was used as an organometallic source for the deposition of ultra thin (∼14 nm) ZrO2 films on p-Ge (1 0 0) substrates. It is observed that the presence of an ultra thin lossy GeOx interfacial layer between the deposited high-k film and the substrate, results in frequency dependent capacitance-voltage (C-V) characteristics and a high interface state density (∼1012 cm−2 eV−1). Use of nitrogen engineering to convert the lossy GeOx interfacial layer to its oxynitride is found to improve the electrical properties. Magnetic resonance studies have been performed to study the chemical nature of electrically active defects responsible for trapping and reliability concerns in high-k/Ge systems. The effect of transient response and dielectric relaxation in nitridation processes has been investigated under high voltage pulse stressing. The stress-induced trap charge density and its spatial distribution are reported. Charge trapping/detrapping of stacked layers under dynamic current stresses was studied under different fluences (−10 mA cm−2 to −50 mA cm−2). Charge trapping characteristics of MIS structures (Al/ZrO2/GeOx/Ge and Al/ZrO2/GeOxNy/Ge) have been investigated by applying pulsed unipolar (peak value - 10 V) stress having 50% duty-cycle square voltage wave (1 Hz-10 kHz) to the gate electrode.  相似文献   

19.
TaYOx-based metal-insulator-metal (MIM) capacitors with excellent electrical properties have been fabricated. Ultra-thin TaYOx films in the thickness range of 15-30 nm (EOT ∼ 2.4-4.7 nm) were deposited on Au/SiO2 (100 nm)/Si (100) structures by rf-magnetron co-sputtering of Ta2O5 and Y2O3 targets. TaYOx layers were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) to examine the composition and crystallinity. An atomic percentage of Ta:Y = 58.32:41.67 was confirmed from the EDX analysis while XRD revealed an amorphous phase (up to 500 °C) during rapid thermal annealing. Besides, a high capacitance density of ∼3.7-5.4 fF/μm2 at 10 kHz (εr ∼ 21), a low value of VCC (voltage coefficients of capacitance, α and β) have been achieved. Also, a highly stable temperature coefficient of capacitance, TCC has been obtained. Capacitance degradation phenomena in TaYOx-based MIM capacitors under constant current stressing (CCS at 20 nA) have been studied. It is observed that degradation depends strongly on the dielectric thickness and a dielectric breakdown voltage of 3-5 MV/cm was found for TaYOx films. The maximum energy storage density was estimated to be ∼5.69 J/cm3. Post deposition annealing (PDA) in O2 ambient at 400 °C has been performed and further improvement in device reliability and electrical performances has been achieved.  相似文献   

20.
A nickel silicide process for Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloy materials compatible with Si technology has been developed. Low-resistivity-phase (12–20 μΘ cm) nickel silicides have been obtained for these alloys with different low sheet-resistance temperature windows. The study shows that thin (15–18 nm) silicide layers with high crystalline quality, smooth silicide surface, and smooth interface between silicide and the underlying material are achievable. The technique could be used to combine the benefits of Ni silicide and Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloys. The technique is promising for Si or Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloy-based metal-oxide semiconductor, field-effect transistors (MOSFETs) or other device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号