首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1530-nm band has been studied as a pump wavelength for the long-wavelength-band erbium-doped fiber amplifier (L-band EDFA). The pump source is built using a tunable light source and cascaded conventional-band (C-band) EDFA. The L-band EDFA uses a forward pumping scheme. Within the 1530-nm band, the 1545-nm pump demonstrates 0.45-dB/mW gain coefficient, which is twice better than that of conventional 1480-nm pumped EDFA. The noise figure of the 1530-nm pump is at worst 6.36 dB, which is 0.75 dB higher than that of the 1480-nm pumped EDFA. Such high-gain coefficient indicates that the L-band EDFA consumes low power  相似文献   

2.
L波段掺铒光纤放大器(EDFA)的增益介质具有本征增益平坦特性,但平坦增益值低,放大器实用性差,因此对放大器优化设计提高平坦增益有十分重要的意义。使用光纤环形镜(FLM)作为增益平坦滤波器进行L波段掺铒光纤放大器的增益平坦化实验,实现了高增益值的平坦输出。  相似文献   

3.
C波段和980 nm抽运的两段级联L波段掺铒光纤放大器   总被引:5,自引:3,他引:2  
刘彬  孙军强 《中国激光》2003,30(10):917-920
提出了由C波段和传统的 980nmLD两段级联抽运L波段信号的结构 ,C波段的功率和波长由掺铒光纤激光器控制。从实验和理论上分析了注入不同波长和功率的C波段对其增益的影响。设计的掺铒光纤放大器(EDFA)结构 ,在C波段波长为 15 2 5nm ,注入功率为 5mW时 ,功率为 - 2 0dBm ,波长为 15 80nm的信号增益提高了 7 7dB。  相似文献   

4.
A novel and simple technique for gain flatness control is reported for gain shifted, long wavelength band (L-band) erbium-doped fiber amplifiers (EDFAs). Utilization of the backward traveling amplified spontaneous emission (ASE) in the C-band is analyzed with respect to controlling the gain tilt observed in the L-band when the total input power of the EDFA is changed. It is shown that a gain flatness of 0.6 dB/30 nm can be achieved over a dynamic range greater than 10 dB by using the backward traveling ASE power in the C-band as a monitor to adjust the copropagating pump power of the EDFA. The proposed technique eliminates the need to extract the output signals from the monitored ASE signal, demonstrating the suitability and simplicity of the proposed technique for wavelength division multiplexed applications  相似文献   

5.
方太亮 《光子技术》2006,(3):128-130
研究C—band种籽光对L—band EDFA泵浦转换效率的影响,实验表明,在L—band EDFA中注入C—band种籽光时,可以有效提高泵浦转换效率。  相似文献   

6.
The performance of a long wavelength‐band erbium‐doped fiber amplifier (L‐band EDFA) using 1530nm‐band pumping has been studied. A 1530nm‐band pump source is built using a tunable light source and two C‐band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L‐band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L‐band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm‐band pump. The L‐band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of –10dBm/ch. These results demonstrate that 1530nm‐band pump can be used as a new efficient pump source for L‐band EDFAs.  相似文献   

7.
一种简单的高功率L波段超荧光光源   总被引:3,自引:3,他引:0       下载免费PDF全文
采用双程前向结构,在一根高浓度掺铒光纤中实现了功率高达13.13mW(11.18dBm)、平均波长为1578.53nm的L波段高功率超荧光输出,在1570nm~1620nm间的功率高于9.38mW。可满足分布式光纤光栅传感、DWDM等由C波段向L波段扩展的带宽及功率需求,同时与C波段光匹配后,可得到功率高于20mW的C+L波段宽带高功率光输出。其中采用普通耦合器制作的光纤圈反射器,将后向的C波段ASE重新引回光纤中,提高了抽运源的利用效率和光纤输出光的稳定性,同时分析了光源的输出功率、平均波长、稳定性等随光纤长度、抽运功率的变化特征,对于光源的应用设计提供参考。  相似文献   

8.
Band selection in a broadband (C+L) loop amplified spontaneous emission (ASE) source using C-band seed signal injection is experimentally demonstrated and compared with conventional double-pass bidirectionally pumped ASE source designs. Significant suppression in C-band and increase in L-band ASE powers were observed for increasing C-band seed signal power. This enables C-, C+L-, and L-band operations in the loop ASE source with the seed signal power of less than -12 dBm, between -12 and -3 dBm, and higher than -3 dBm, respectively.  相似文献   

9.
An obvious improvement on both the gain and noise figure (NF) is demonstrated in the new double-pass L-band erbium-doped fiber amplifier (EDFA) with incorporating a fiber Bragg grating (FBG). Compared with the conventional L-band EDFAs, the gain is improved by about 6 dB in the new configuration for a 1580-nm signal with an input power of -30 dBm at 60 mW of 980-nm pump power. It is important that the NF is greatly reduced in the new configuration, as the FBG greatly compresses the backward amplified spontaneous emission. For the economical utility of pump power and erbium-doped fiber length, such a configuration may be a very competitive candidate in the practical applications of L-band EDFAs.  相似文献   

10.
We propose a novel structure for C plus L-band silica based wide-band erbium-doped fiber amplifiers (W-EDFA's), which use backward amplified spontaneous emission from the C-band EDFA as the pump-mediating injection source for the L-band amplifier unit. Experimental results show gain and noise figure improvements of over 2.6 dB and 0.6 dB, respectively, at -3.5 dBm of L-band input signal power. Spatially resolved numerical analysis confirms the pump-mediating effect of C-band backward ASE in the L-band EDFA for the gain and noise figure improvement, which also provides better understanding on the dynamics of C-band injection seed methods  相似文献   

11.
Temperature dependence of multichannel gain flatness and noise figure (NF) was compared for different pump wavelengths of 1.48 and 0.98 μm on silica-based erbium-doped fiber amplifiers (EDFAs) through measurement-based numerical simulation. Owing to its temperature sensitive pump emission cross section, the 1.48-μm pumping showed greater temperature sensitivity (maximum 0.75-dB gain flatness distortion with 0.57-dB average gain level shift, 0.3-dB NF variation for 25°C change) than the 0.98 μm pumping (maximum 0.5-dB gain flatness distortion with 0.015-dB average gain level shift, 0.05-dB NF variation for 25°C change). However, it was also found that distortion ripple spectra mainly coming from the changes of signal cross sections and asymmetric gain temperature dependence necessitate compensation techniques in the EDFA link, irrespective of pump wavelength  相似文献   

12.
文章提出了一种基于三端口增益平坦滤波器、且在拓扑结构上不同于以往并行或串行结构的掺铒光纤放大器(EDFA)的新结构。理论模拟显示,同常规的并行结构EDFA相比,该新型结构在保证C波段EDFA性能的同时亦可将L波段掺铒光纤(EDF)用量减少48%以上,改善L波段泵浦效率55%以上。实验中,我们在C波段使用两只输出功率分别为106.9和109.6mW的980nm泵浦激光器,两段EDF的长度分别为8.5和9.6m,在L波段我们仅用1只80mW的1480nm泵浦激光器,EDF长度为19.8m。试验结果显示,在C+L波段内得到的信号增益〉23dB,增益平坦度〈0.6dB,噪声指数在C和L波段内分别〈4.4dB和5.6dB。  相似文献   

13.
We analyze the recently proposed serial topology of a wide-band erbium-doped fiber amplifier (EDFA) covering both the C- and L-bands and compare it with the parallel configuration of C-band and L-band amplifiers. The analysis is based on an application of a comprehensive large-signal numerical model, which takes into consideration propagation of wavelength-division multiplexing (WDM) signals, bidirectional pump, and both the downstream and upstream ASE power spectral components. We have found that in the multiwavelength regime the new topology can provide output power of 3 dBm/channel for 32 C-band and 40 L-band, 0.8-nm-spaced signals with reasonable pump powers to the first and the second stage. In comparison with the usual parallel configuration of C-band and L-band EDFAs, this topology saves about 20% of overall pump power, 10% of the necessary length of erbium-doped fiber (EDF) and achieves lower noise figure for L-band signals  相似文献   

14.
We report an S-band erbium-doped fiber amplifier (EDFA) with a multistage configuration in terms of its design, gain, and noise characteristics for various pump powers and input signal powers, the temperature dependence of the gain spectra, and gain tilt compensation for changes in input signal power and temperature change. We show that there is a tradeoff between low noise and efficiency in the S-band EDFA and describe the development of an S-band EDFA with a flattened gain of more than 21 dB and a noise figure of less than 6.7 dB. We also show that there is a change in the gain spectra with changes in the pump power and input signal power that is different from that observed in C- and L-band EDFAs, and that our EDFA has a temperature-insensitive wavelength. Furthermore, we develop a gain tilt compensated S-band EDFA that can cope with changes in input signal power and temperature.  相似文献   

15.
Temperature-dependent gain and noise characteristics of conventional band and long wavelength band erbium-doped fiber amplifiers are compared. Gain variations and noise figure penalties are shown for 980- and 1480-nm pump wavelength bands at different average inversion levels when the erbium coil temperature is cycled from -10°C to 80°C. Experimental results demonstrate that the L-band exhibits greater temperature-dependent gain and noise figure excursions compared to the C-band. Furthermore, it is shown that the impact of erbium coil temperature in the L-band is comparatively less dependent upon pump wavelength  相似文献   

16.
基于光纤环形镜的L-波段掺铒光纤放大器增益的提高   总被引:3,自引:0,他引:3  
提出了一种基于光纤环形镜作为反射器的反射式L-波段掺铒光纤放大器(EDFA)结构。光纤环形镜不但可以反射后向放大自发辐射(ASE)作为二次抽运源,而且还可以反射信号,使信号得到二次放大。当抽运功率为115mW时。在1570~1605nm波长范围内,反射式L-波段掺铒光纤放大器的平坦小信号增益达到29.14dB,与前向抽运方式L-波段掺铒光纤放大器相比(保持平坦性不变)。增益提高了5.33dB。分别输入波长为1580nm和1600nm的信号,反射式L-波段掺铒光纤放大器的饱和输出功率为7.63和7.6dBm.与前向抽运方式L-波段掺铒光纤放大器相比分别提高了2.98和3dB。  相似文献   

17.
Ng  L.N. Taylor  E.R. Nilsson  J. 《Electronics letters》2002,38(21):1246-1247
Gain measurement in thulium-doped tellurite fibre is demonstrated with a maximum internal gain of 7 dB at 1480 nm. An improvement in gain by a factor of 2 is achieved using a 795 nm and 1064 nm dual pump scheme. Gain in tellurite fibres extends to longer wavelength than in fluorides, showing improved overlap with the C-band EDFA.  相似文献   

18.
Gain clamping in two-stage L-band EDFA using a broadband FBG   总被引:3,自引:0,他引:3  
A gain-clamped long wavelength band erbium-doped fiber amplifier (L-band EDFA) with an improved gain characteristic is demonstrated by simply adding a broadband conventional band (C-band) fiber Bragg grating (FBG) in a two-stage amplifier system. The FBG reflects backward C-band amplified spontaneous emission (ASE) from the second stage back into the system to clamp the gain. The gain is clamped at about 22.4 dB with a gain variation below 0.4 dB for input signal powers of -40 to -15 dBm. Compared with an unclamped amplifier of similar noise figure values, the small signal gain has improved by 2.4 dB due to the FBG which blocks the backward propagating ASE. At wavelengths from 1570 to 1600 nm, gain of the clamped amplifier varies from 19.4 to 26.7 dB. The corresponding noise figure varies by /spl plusmn/0.35 dB around 5 dB, which is not much different compared to that of the unclamped amplifier.  相似文献   

19.
基于单个光纤光栅反射技术的高性能L波段EDFA   总被引:1,自引:1,他引:0  
基于单个光纤光栅反射技术提出一种高性能L波段EDFA。用一个光纤布拉格光栅(FBG)反射EDFA产生的一部分C波段放大自发辐射(ASE)噪声,该部分ASE噪声被重新注入到掺铒光纤中以提高增益效率。用静态均衡器平坦输出的增益谱,在L波段范围内,增益被箝制在25.5dB,增益不平坦度小于0.5dB,噪声指数小于5.5dB,为DWDM系统提供了一项有效的解决方案。  相似文献   

20.
A gain-clamping technique for the long wavelength band (L-band) erbium-doped fiber amplifier (EDFA) is presented. It uses a single fiber Bragg grating (FBG) on the input side of erbium-doped fiber (EDF) to inject a portion of backward conventional band (C-band) amplified spontaneous emission (ASE) back into the system. The use of a narrow-band (NB) FBG has shown a better performance in clamped-gain level and noise figure compared to a broad-band FBG. The amplifier gain for the NB FBG set up is clamped at 15.4 dB with a variation of less than 0.3 dB for an input power as high as 0 dBm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号