首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
激光微弯曲成形机理的数值研究   总被引:9,自引:2,他引:7  
黄晨光  段祝平 《中国激光》2002,29(3):281-285
利用自行研制的含热传导、冲击动力学大、变形有限元程序 ,模拟了小尺寸梁在脉冲激光加热条件下的变形过程。在此基础上 ,利用商用程序模拟了冷却及残余应力的产生 ,研究了激光参数 (强度及分布 )等对于微弯曲的影响。数值模拟结果与文献中的实验观察相吻合  相似文献   

2.
王凯  杨海欧  刘奋成  林鑫  黄卫东 《中国激光》2012,39(6):603002-74
针对单道多层的直薄件激光立体成形过程,建立了基板预变形和无预变形条件下的3D参数化有限元模型,进行了应力和变形的瞬时热弹塑性有限元模拟分析。模拟结果表明,基板预变形处理影响成形件应力和变形的分布与大小,并可减轻基板的翘曲变形。预变形下基板下表面具有初始拉应力点的残余应力值比无预变形要小,基板与熔覆层接触的界面中间位置残余应力也小于无预变形的情况,直薄壁件最大残余压应力所在位置也发生变化。在两模型中,熔覆层两侧边缘位置变形严重,而中间位置变形较小。熔覆层首层的沉积对基板变形量影响最大,后续熔覆层的沉积对基板变形量影响程度逐渐减小并最终趋于稳定。成形前对基板进行适当的预变形处理可以有效控制成形件变形和改善应力分布。  相似文献   

3.
有限元法在电子束焊接中的应用   总被引:1,自引:0,他引:1  
针对某微波组件的电子束焊接过程,采用有限元法对焊接变形进行了模拟分析,并对焊接电流和焊接速度参数进行了优化.结果表明,理论计算值与实际测量值是完全吻合的,增加焊接电流或降低速度会加大焊接变形.该法对工程实践具有指导意义.  相似文献   

4.
该文提出一种基于压电纤维复合材料(MFC)的结构热变形物理模拟方法,建立了悬臂梁结构热变形与 MFC驱动变形的相关性方程,并与有限元仿真进行对比验证。面向复合材料层合板以结构热变形模拟为目标, 利用优化的方法反求出 MFC的驱动电压,从而指导 MFC驱动实验。结果表明,对于均质悬臂梁的弯曲变形,仿真结果与理论表达式一致;面向层合板的弯扭耦合变形、MFC驱动变形与热变形的测点位移误差均在5%内,验证了该文提出的物理模拟方法的有效性。  相似文献   

5.
为降低激光沉积修复钛合金基体的残余应力与变形,采用有限元参数化设计语言研究了不同激光扫描路径对修复基体残余应力与变形的影响,模拟了不同扫描路径下修复基体残余应力及不同修复层残余应力的分布情况,并对原因进行了分析。结果表明:不同扫描路径下基体两端残余应力值较大,修复层残余应力值两端高,中间低,采用层间交错扫描路径时,各修复层残余应力值大小和波动幅度降低,修复件表面平整度值最小。采用压痕法对不同扫描方式下修复件表面残余应力进行了测定,得到了不同扫描路径下基体变形曲线,并与模拟结果进行了比较,两者吻合较好,为提高激光修复质量提供了参考依据。  相似文献   

6.
高立 《应用激光》2008,28(2):129-131
实验研究了不同的光斑间距对SUS304不锈钢板激光冲击的变形影响,并用ABAQUS软件进行了有限元仿真分析.实验和仿真结果均表明:随着光斑间距的减小,受冲区域更加平整.通过数值模拟可优化激光冲击的相关参数,预测板料变形.  相似文献   

7.
基于反向映射法逆向描述数字散斑变形的方法   总被引:1,自引:1,他引:0  
考虑 到现有制备模拟散斑图方法系统误差较大、生成方法复杂和编程实现困难等不足,提出 一种基于反向 映射法的变形散斑图生成方法,将变形模式进行反向变换,并利用变形过程中图像灰 度不变的特性, 生成变形后的模拟散斑图。仿真分析表明对于相同数字图像相关(DIC)法计算参数,本文的 反向映射法生成的变形散斑图具有更高 的计算精度,因而提高了DIC法计算结果的可信度;并且,本文的反向映射法具有易于理 解和易编程实现等优点。  相似文献   

8.
影响激光喷丸成形中板料最终成形形状的工艺参数众多,为了达到需要的板料变形量及残余压应力层深度,必须对各工艺参数进行优化控制.利用正交表设计了主要的激光器和板料参数,并用ANSYS/LS-DYNA模拟了全部情况.采用极差法对数值计算结果进行分析,得到了各因素的主次关系以及较优的参数水平组合.结果表明,利用正交法对激光喷丸成形工艺参数进行优化设计可以有效控制残余应力形态,从而控制板料变形,对试验具有重要的指导意义.  相似文献   

9.
脉冲激光冲击LD31薄板变形的实验和数值模拟   总被引:3,自引:0,他引:3  
激光冲击板料变形是利用高能脉冲激光和材料相互作用诱导的高幅冲击波的力效应使板料产生塑性变形的新技术 ,本文利用Nd :Glass脉冲激光对厚度为 0 .8mm的LD31薄板进行激光冲击变形实验。所用激光参数为 :脉冲能量 15~ 30J,脉冲宽度 2 5ns ,光斑直径Φ8mm。利用ABAQUS软件对激光冲击下板料的变形过程进行了数值模拟 ,建立了激光冲击波加载的数学模型 ,探索激光冲击的主要参数和板料变形之间的相互关系 ,为激光冲击变形工艺参数的优化、板料变形的理论分析 ,实现大面积金属板料的柔性激光冲压成形提供依据。  相似文献   

10.
为了使TMT三镜系统具有跟踪瞄准功能,同时可以校正由于重力引起的结构变形,设计一个大型的Stewart平台来完成三镜的Tilt调整。根据初始参数对并联机构进行了位置反解的计算,并分别对支腿轴向力和刚度进行了建模,最后使用了Matlab进行优化计算,得出一组最优解。根据所求出的最优解使用ANSYS建立了三镜系统的参数化模型,并与Matlab联合仿真,对三镜系统的各个工况进行了有限元模拟。仿真得到三镜各个工作位置时的支腿的伸长量、重力下的变形、第一阶模态值以及六根支腿内力。模拟结果显示,最终设计的Stewart平台支腿的最大变形量为0.813 mm,与优化前的模型相比下降了20%;第一阶模态最小值为16.7 Hz,与优化前的模型相比上升了18%;六根支腿的轴向力最大值为27 219 N,相比优化前下降了15.9%。  相似文献   

11.
激光诱发热应力成形的研究   总被引:2,自引:1,他引:1  
研究了低碳钢板料的激光诱发热应力成形行为。结果表明,对于多道扫描激光成形工艺,诱发热应力成形角度受到许多工艺参数的影响,线能量是激光诱发热应力成形的主要影响因素。其中,激光功率、光束直径、扫描速度、扫描次数、板料厚度等参数的效应尤其显著。通过对试验结果的定性分析,所得的结论可以为激光诱发热应力成形技术的进一步理论研究和可能的工业应用提供依据。  相似文献   

12.
不锈钢-碳钢层合板激光弯曲试验研究   总被引:4,自引:2,他引:2  
层状金属复合板以优良的材料和结构性能在舰船、汽车和飞行器等装备中显示了广阔的应用前景。为研究工艺因数对层状金属复合板激光弯曲成形的影响,以不锈钢-碳钢层合板为研究对象,对这种层状金属复合板的激光弯曲角度和规律进行了系统的试验研究。结果表明,不锈钢-碳钢层合板和不锈钢板激光弯曲存在共性,弯曲角度随着激光功率增加而增大,随着扫描速度增加而减小,随着扫描次数增加而增大,随着板厚增大而减小。同时二者也存在差异;随着不锈钢-碳钢层合板宽度的增加,弯曲角度先减小后增大;在相同工艺条件下,不锈钢-碳钢层合板弯曲角度大于不锈钢板的弯曲角度,并在一次固定安装下获得85.6°这一接近直角的极限弯曲角度。  相似文献   

13.
本文对取向硅钢片降低铁损的激光加工过程进行了热弹塑性分析。通过热传导分析和弹塑性应力分析,预测了在激光加工中因不合理的热加工工艺而引起的涂层破坏问题和弯曲变形问题,并确定出了合理的工艺参数范围:既能确保铁损下降,又能防止涂层破坏和弯曲变形,保证激光加工质量。  相似文献   

14.
管材激光弯曲成形有限元工艺仿真及其机理研究   总被引:4,自引:0,他引:4  
管材激光弯曲成形是一种柔性金属塑性成形方法,将连续的激光光斑简化为一间歇跳跃的方形面热源,并且考虑材料性能参数与温度的相关性,建立了管材激光弯曲成形的热-机耦合有限元工艺仿真模型。有限元仿真结果表明:同板料的激光弯曲成形一样,对应于加热和冷却阶段,管材的激光弯曲成形也分别经历反向弯曲和正向弯曲两个变形阶段,管材激光弯曲成形的内在机理是典型的温度梯度机理。  相似文献   

15.
Kirigami—the Japanese art of cutting paper—has recently inspired the design of highly stretchable and morphable mechanical metamaterials that can be easily realized by embedding an array of cuts into a sheet. This study focuses on thin plastic sheets perforated with a hierarchical pattern of cuts arranged to form an array of hinged squares. It is shown that by tuning the geometric parameters of this hierarchy as well as thickness and material response of the sheets not only a variety of different buckling‐induced 3D deformation patterns can be triggered, but also the stress–strain response of the surface can be effectively programmed. Finally, it is shown that when multiple hierarchical patterns are brought together to create one combined heterogeneous surface, the mechanical response can be further tuned and information can be encrypted into and read out via the applied mechanical deformation.  相似文献   

16.
Flexible superconducting yarns consisting of sputter‐deposited NbN nanowires on highly aligned carbon nanotube (CNT) array sheets are reported. In the microscopic view, the NbN nanowires are formed on top of individual CNT fibrils, and the superconductivity property of the twist‐spun NbN–CNT yarn system is comparable to that of a typical NbN thin film on a normal solid substrate. Because of its intrinsic porosity, the system exhibits superior mechanical flexibility with a small bending radius. It also remains a superconducting state even when subjected to severe mechanical deformations, primarily due to the proximity superconductivity through carbon nanotube bundles. The results demonstrate the possibility of fabricating flexible superconducting yarns in a conventional thin‐film deposition process, using ultraflexible free‐standing CNT sheets as a template. In addition, preliminary tests on reducing the normal‐state resistance toward superconducting cable applications are presented.  相似文献   

17.
The mechanical properties of 2D boron—borophene—are studied by first‐principles calculations. The recently synthesized borophene with a 1/6 concentration of hollow hexagons (HH) is shown to have in‐plane modulus C up to 210 N m?1 and bending stiffness as low as D = 0.39 eV. Thus, its Foppl–von Karman number per unit area, defined as C /D , reaches 568 nm?2, over twofold higher than graphene's value, establishing the borophene as one of the most flexible materials. Yet, the borophene has a specific modulus of 346 m2 s?2 and ideal strength of 16 N m?1, rivaling those (453 m2 s?2 and 34 N m?1) of graphene. In particular, its structural fluxionality enabled by delocalized multicenter chemical bonding favors structural phase transitions under tension, which result in exceptionally small breaking strains yet highly ductile breaking behavior. These mechanical properties can be further tailored by varying the HH concentration, and the boron sheet without HHs can even be stiffer than graphene against tension. The record high flexibility combined with excellent elasticity in boron sheets can be utilized for designing advanced composites and flexible devices.  相似文献   

18.
In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).  相似文献   

19.
Here, the development of ordered mesoporous silica prepared by the reaction of layered silicates with organoammonium surfactants is reviewed. The specific features of mesoporous silica are discussed with relation to the probable formation mechanisms. The recent understanding of the unusual structural changes from the 2D structure to periodic 3D mesostructures is presented. The formation of mesophase silicates from layered silicates with single silicate sheets depends on combined factors including the reactivity of layered silicates, the presence of layered intermediates, the variation of the silicate sheets, and the assemblies of surfactant molecules in the interlayer spaces. FSM‐16‐type (p6mm) mesoporous silica is formed via layered intermediates composed of fragmented silicate sheets and alkyltrimethylammonium (CnTMA) cations. KSW‐2‐type (c2mm) mesoporous silica can be prepared through the bending of the individual silicate sheets with intralayer and interlayer condensation. Although the structure of the silicate sheets changes during the reactions with CnTMA cations in a complex manner, the structural units caused by kanemite in the frameworks are retained. Recent development of the structural design in the silicate framework is very important for obtaining KSW‐2‐based mesoporous silica with molecularly ordered frameworks. The structural units originating from layered silicates are chemically designed and structurally stabilized by direct silylation of as‐synthesized KSW‐2. Some proposed applications using these mesoporous silica are also summarized with some remarks on the uniqueness of the use of layered silicates by comparison with MCM‐type mesoporous silica.  相似文献   

20.
It is essential to understand the size scaling effects on the mechanical properties of graphene networks to realize the potential mechanical applications of graphene assemblies. Here, a “highly dense‐yet‐nanoporous graphene monolith (HPGM)” is used as a model material of graphene networks to investigate the dependence of mechanical properties on the intrinsic interplanar interactions and the extrinsic specimen size effects. The interactions between graphene sheets could be enhanced by heat treatment and the plastic HPGM is transformed into a highly elastic network. A strong size effect is revealed by in situ compression of micro‐ and nanopillars inside electron microscopes. Both the modulus and strength are drastically increased as the specimen size reduces to ≈100 nm, because of the reduced weak links in a small volume. Molecular dynamics simulations reveal the deformation mechanism involving slip‐stick sliding, bending, buckling of graphene sheets, collapsing, and densification of graphene cells. In addition, a size‐dependent brittle‐to‐ductile transition of the HPGM nanopillars is discovered and understood by the competition between volumetric deformation energy and critical dilation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号