首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The hedgehog signaling pathway plays a critical role in bone development and regeneration. Applications of hedgehog morphogens or small molecular agonists are of interest in bone repair but constrained by low stability, high dose requirement, and nonspecific targeting in vivo. Herein, a nanoparticulate agonist as a new type of hedgehog signaling activator is developed for efficacious bone healing. The shell of nanoparticulate agonist consists of palmitic acid and oxysterol, which could modify hedgehog function and bind with the smoothened receptor to positively modulate hedgehog signaling. Meanwhile, the core is assembled with the sonic hedgehog gene/polyethyleneimine complex, which could synergistically enhance hedgehog signaling with oxysterol constituents. Moreover, alendronate is introduced into the nanoparticulate agonist to bind with hydroxyapatite for potential bone tissue targeting. Lastly, the nanoparticulate agonist surface is decorated with the guanidine group to overcome cell membrane barriers. The created multifunctional nanoparticulate agonist is successfully integrated onto apatite‐coated 3D scaffolds and demonstrates greatly improved osteogenesis in vitro and calvarial bone healing. This work suggests a novel biomaterial design to specifically promote hedgehog signaling for the treatment of bone defects.  相似文献   

2.
The use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self‐etch primers. Validation of the adhesive strength is conducted on wet bone substrates and accomplished via fiber‐reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bond strength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K‐wires and match metal plates and screw implants.  相似文献   

3.
The need for implants to repair large bone defects is driving the development of porous synthetic scaffolds with the requisite mechanical strength and toughness in vivo. Recent developments in the use of design principles and novel fabrication technologies are paving the way to create synthetic scaffolds with promising potential for reconstituting bone in load‐bearing sites. Here, the state of the art in the design and fabrication of bioactive glass and ceramic scaffolds that have improved mechanical properties for structural bone repair is reviewed. Scaffolds with anisotropic and periodic structures can be prepared with compressive strengths comparable to human cortical bone (100?150 MPa), while scaffolds with an isotropic structure typically have strengths in the range of trabecular bone (2?12 MPa). However, the mechanical response of bioactive glass and ceramic scaffolds in multiple loading modes such as flexure and torsion—as well as their mechanical reliability, fracture toughness, and fatigue resistance—has received little attention. Inspired by the designs of natural materials such as cortical bone and nacre, glass‐ceramic and inorganic/polymer composite scaffolds created with extrinsic toughening mechanisms are showing potential for both high strength and mechanical reliability. Future research should include improved designs that provide strong scaffolds with microstructures conducive to bone ingrowth, and evaluation of these scaffolds in large animal models for eventual translation into clinical applications.  相似文献   

4.
Malignant bone tumors are often accompanied by osteolytic destruction and severe pathological fractures. Current therapeutic strategies can largely inhibit tumor proliferation, but the high recurrence rate of tumors and related bone defects remain a significant challenge. This study aims to address these issues by developing a novel near-infrared (NIR) light-responsive and a mechanically strong hydrogel that offers excellent photothermal tumor therapy and bone fracture repair capabilities. The as-prepared hydrogel exhibits good biocompatibility and an ultra-strong photothermal effect due to the formation of a complex network with up-conversion lanthanide-Au hybrid nanoparticles and alginate molecules. A subcutaneous tumor model is used to demonstrate that tumors can be efficiently eradicated via local photothermal treatment, where there is no tumor recurrence within the observation period. Moreover, the injected hydrogel becomes mechanically strong due to in situ Ca2+ crosslinking, which provides a supportive matrix to promote the repair of bone defects via stabilization of the fractured bone structure. The high photothermal effect and robust support offered by this single material demonstrate the potential of using the proposed hydrogel for the simultaneous treatment of bone tumor removal and bone healing.  相似文献   

5.
6.
7.
A series of novel injectable and photo‐crosslinkable poly(propylene fumarate) (PPF)‐co‐polyhedral oligomeric silsesquioxane (POSS) copolymers are synthesized via two‐step polycondensation to improve both stiffness and toughness and to promote biological performance of bone tissue engineering scaffolds. The viscoelastic behavior of uncrosslinked PPF‐co‐POSS and the thermal, mechanical, and surface characteristics of photo‐crosslinked PPF‐co‐POSS are investigated as well as the degradation behavior and microscopic POSS domain structures at various weight compositions of POSS (?POSS). Tensile and compressive moduli and facture toughness are enhanced for crosslinked PPF‐co‐POSS when POSS nanocages are well distributed and their crystallinity is completely confined in the networks. Decreases in these mechanical properties are observed at higher ?POSS because of decreased crosslinking density and larger POSS aggregates. The mechanical properties are correlated with in vitro mouse pre‐osteoblastic MC3T3‐E1 cell functions including cell attachment, spreading, proliferation, differentiation, and gene expression, which all maximize at ?POSS of 10%.  相似文献   

8.
Silk fibroin (SF) has attracted great interest in bone tissue engineering due to its extraordinary characteristics in terms of mechanical properties, biocompatibility, and biodegradability. SF scaffolds are assembled by biocompatible polydopamine nanoparticles at mesoscopic scale, which endows the scaffolds with a near-infrared (NIR) light response for the treatment of bone tumors. The functionalized SF scaffold not only enhances the significant structure and performance of native SF scaffold for bone treatment and reconstruction, such as primary and mesoscopic structure, multi-level pores, and biodegradation, as well as biocompatibility but also have excellent photothermal effect leading a significant cytotoxicity to MG63 cancer cells after NIR laser irradiation. Moreover, the penetration of NIR light in tissue is improved using an optical fiber, which demonstrates the obtained scaffolds’ great potential in the application of photothermal therapy.  相似文献   

9.
Functional regeneration of complex large-scaled defects requires both soft- and hard-tissue grafts. Moreover, bone constructs within these grafts require an extensive vascular supply for survival and metabolism during the engraftment. Soft-tissue pedicles are often used to vascularize bony constructs. However, extensive autologous tissue-harvest required for the fabrication of these grafts remains a major procedural drawback. In the current work, a composite flap is fabricated using synthetic soft-tissue matrices and decellularized bone, combined in vivo to form de novo composite tissue with its own vascular supply. Pre-vascularization of the soft-tissue matrix using dental pulp stem cells (DPSCs) and human adipose microvascular endothelial cells (HAMECs) enhances vascular development within decellularized bones. In addition, osteogenic induction of bone constructs engineered using adipose derived mesenchymal stromal cells positively affects micro-capillary organization within the mineralized component of the neo-tissue. Eventually, these neo-tissues used as axial reconstructive flaps support long-term bone defect repair, as well as muscle defect bridging. The composite flaps described here may help eliminate invasive autologous tissue-harvest for patients in need of viable grafts for transplantation.  相似文献   

10.
Anisotropic hydrogels mimicking the biological tissues with directional functions play essential roles in damage-tolerance, cell guidance and mass transport. However, conventional synthetic hydrogels often have an isotropic network structure, insufficient mechanical properties and lack of osteoconductivity, which greatly limit their applications for bone repair. Herein, inspired by natural bone and wood, a biomimetic strategy is presented to fabricate highly anisotropic, ultrastrong and stiff, and osteoconductive hydrogel composites via impregnation of biocompatible hydrogels into the delignified wood followed by in situ mineralization of hydroxyapatite (HAp) nanocrystals. The well-aligned cellulose nanofibrils endow the composites with highly anisotropic structural and mechanical properties. The strong intermolecular bonds of the aligned cellulose fibrils and hydrogel/wood interaction, and the reinforcing nanofillers of HAp enable the composites remarkable tensile strength of 67.8 MPa and elastic modulus of 670 MPa, three orders of magnitude higher than those of conventional alginate hydrogels. More importantly, the biocompatible hydrogel together with aligned HAp nanocrystals could effectively promote osteogenic differentiation in vitro and induce bone formation in vivo. The bone ingrowth into the hydrogel composite scaffold also yields good osteointegration. This study provides a low-cost, eco-friendly, feasible, and scalable approach for fabricating anisotropic, strong, stiff, hydrophilic, and osteoconductive hydrogel composites for bone repair.  相似文献   

11.
The use of hydrogel‐based bone adhesives has the potential to revolutionize the clinical treatment of bone repairs. However, severe deficiencies remain in current products, including cytotoxicity concerns, inappropriate mechanical strength, and poor fixation performance in wet biological environments. Inspired by the unique roles of glue molecules in the robust mechanical strength and fracture resistance of bone, a design strategy is proposed using novel mineral–organic bone adhesives for strong water‐resistant fixation and guided bone tissue regeneration. The system leveraged tannic acid (TA) as a phenolic glue molecule to spontaneously co‐assemble with silk fibroin (SF) and hydroxyapatite (HA) in order to fabricate the inorganic–organic hybrid hydrogel (named SF@TA@HA). The combination of the strong affinity between SF and TA along with sacrificial coordination bonds between TA and HA significantly improves the toughness and adhesion strength of the hydrogel by increasing the amount of energy dissipation at the nanoscale. This in turn facilitated adequate and stable fixation of bone fracture in wet biological environments. Furthermore, SF@TA@HA promotes the regeneration of bone defects at an early stage in vivo. This work presents a type of bioinspired bone adhesive that is able to provide stable fracture fixation and accelerated bone regeneration during the bone remodeling process.  相似文献   

12.
Three‐dimensional integration technology results in area savings, platform power savings, and an increase in performance. Through‐silicon via (TSV) assembly and manufacturing processes can potentially introduce defects. This may result in increases in manufacturing and test costs and will cause a yield problem. To improve the yield, spare TSVs can be included to repair defective TSVs. This paper proposes a new built‐in self‐test feature to identify defective TSV channels. For defective TSVs, this paper also introduces dynamic self‐repair architectures using code‐based and hardware‐mapping based repair.  相似文献   

13.
Critical-sized bone defects, especially for irregular shapes, remain a significant challenge in orthopedics. Although various biomaterials are developed for bone regeneration, their application for repair of irregular bone defects is limited by the complicated preparation procedures involved, and their lack of shape-adaptive capacity, physiological adhesion, and potent osteogenic bioactivity. In the present study, a simple strategy of precipitation by introducing tannic acid (TA) with abundant phenolic hydroxyl groups and Fe3O4 nanoparticles, as metal-phenolic networks (MPN), is developed to easily prepare a fast gelling, shape-adaptive, and highly adhesive regenerated silk fibroin (RSF)/TA/Fe3O4 hydrogel system that can respond to a static magnetic field (SMF). The RSF/TA/Fe3O4 hydrogel exhibits sufficient adhesion in biological microenvironments and good osteogenic effect in vitro and in vivo, under an external SMF, and thus, can be applied to repair critical-sized bone defects. Moreover, bioinformatics analysis reveals that the synergistic mechanism of Fe3O4 NPs and SMF on osteogenic effects can be promotion of osteoblast differentiation via activation of the cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)/extracellular signal-regulated kinase (ERK) signaling pathway. This study provides a promising biomaterial with potential clinical application for the future treatment of (irregular) critical-sized bone defects.  相似文献   

14.
Conventional bone composites consistently fail to mimic the chemical composition and integrated organic/inorganic structure of natural bone, lacking sufficient mechanics as well as inherent osteoconductivity and osteoinductivity. Through a facile surface coating process, the strong adhesive, tannic acid (TA), is adhered to the surface of the natural bone component, hydroxyapatite (HA), with and without the immobilization of in situ formed silver nanoparticles. Residual functional groups available on the immobilized TA substituents are subsequently covalently linked to the citrate‐based biodegradable polymer, poly(octamethylene citrate) (POC), effectively bridging the organic and inorganic phases. Due to the synergistic effects of the tannin and citrate components, the obtained citrate‐based tannin‐bridged bone composites (CTBCs) exhibit vastly improved compression strengths up to 323.0 ± 21.3 MPa compared to 229.9 ± 15.6 MPa for POC‐HA, and possess tunable degradation profiles, enhanced biomineralization performance, favorable biocompatibility, increased cell adhesion and proliferation, as well as considerable antimicrobial activity. In vivo study of porous CTBCs using a lumbar fusion model further confirms CTBCs' osteoconductivity and osteoinductivity, promoting bone regeneration. CTBCs possess great potential for bone regeneration applications while the immobilized TA additionally preserves surface bioconjugation sites to further tailor the bioactivity of CTBCs.  相似文献   

15.
Skeletal tissue regeneration is often required following trauma, where substantial bone or cartilage loss may be encountered and is a significant driver for the development of biomaterials with a defined 3D structural network. Solvent blending is a process that avoids complications associated with conventional thermal or mechanical polymer blending or synthesis, opening up large areas of chemical and physical space, while potentially simplifying regulatory pathways towards in vivo application. Here ternary mixtures of natural and synthetic polymers were solvent blended and evaluated as potential bone tissue engineering matrices for osteoregeneration by the assessment of growth and differentiation of STRO‐1+ skeletal stem cells. Several of the blend materials were found to be excellent supports for human bone marrow‐derived STRO‐1+ skeletal cells and fetal skeletal cells, with the optimized blend exhibiting in vivo osteogenic potential, suggesting that these polymer blends could act as suitable matrices for bioengineering of hard tissues.  相似文献   

16.
17.
Little is known about the role of biocompatible protein nanoridges in directing stem cell fate and tissue regeneration due to the difficulty in forming protein nanoridges. Here an ice‐templating approach is proposed to produce semi‐parallel pure silk protein nanoridges. The key to this approach is that water droplets formed in the protein films are frozen into ice crystals (removed later by sublimation), pushing the surrounding protein molecules to be assembled into nanoridges. Unlike the flat protein films, the unique protein nanoridges can induce the differentiation of human mesenchymal stem cells (MSCs) into osteoblasts without any additional inducers, as well as the formation of bone tissue in a subcutaneous rat model even when not seeded with MSCs. Moreover, the nanoridged films induce less inflammatory infiltration than the flat films in vivo. This work indicates that decorating biomaterials surfaces with protein nanoridges can enhance bone tissue formation in bone repair.  相似文献   

18.
Critical considerations in engineering biomaterials for rotator cuff repair include bone‐tendon‐like mechanical properties to support physiological loading and biophysicochemical attributes that stabilize the repair site over the long‐term. In this study, UV‐crosslinkable polyurethane based on quadrol (Q), hexamethylene diisocyante (H), and methacrylic anhydride (M; QHM polymers), which are free of solvent, catalyst, and photoinitiator, is developed. Mechanical characterization studies demonstrate that QHM polymers possesses phototunable bone‐ and tendon‐like tensile and compressive properties (12–74 MPa tensile strength, 0.6–2.7 GPa tensile modulus, 58–121 MPa compressive strength, and 1.5–3.0 GPa compressive modulus), including the capability to withstand 10 000 cycles of physiological tensile loading and reduce stress concentrations via stiffness gradients. Biophysicochemical studies demonstrate that QHM polymers have clinically favorable attributes vital to rotator cuff repair stability, including slow degradation profiles (5–30% mass loss after 8 weeks) with little‐to‐no cytotoxicity in vitro, exceptional suture retention ex vivo (2.79–3.56‐fold less suture migration relative to a clinically available graft), and competent tensile properties (similar ultimate load but higher normalized tensile stiffness relative to a clinically available graft) as well as good biocompatibility for augmenting rat supraspinatus tendon repair in vivo. This work demonstrates functionally graded, bone‐tendon‐like biomaterials for interfacial tissue engineering.  相似文献   

19.
20.
This case study focuses on The New York Times 's reaction to the Jayson Blair plagiarism/fabrication scandal by examining how the Times explained Blair's failures to uphold standards of newsgathering and its own failure of the editing process. The study uses image restoration and paradigm repair theories to explore how the Times attempted to repair its own image and that of journalism generally, and concludes that the Times demonstrated a more nuanced concept of paradigm repair than earlier research had shown. Although it distanced itself from Blair and emphasized the value of journalistic standards, the Times accepted responsibility for violations of those standards and admitted that the very structure of the news paradigm failed in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号