首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitride-based p-i-n bandpass photodetectors   总被引:1,自引:0,他引:1  
Nitride-based p-i-n bandpass photodetectors with semitransparent Ni-Au electrodes were successfully fabricated and characterized. The photodetectors exhibit a 20-V breakdown voltage and a small dark current of 40 pA at 4-V reverse bias. It was found that spectral responsivity shows a narrow bandpass characteristics from 337 to 365 nm. Moreover, the peak responsivity was estimated to be 0.13 A/W at 354 nm, corresponding to a quantum efficiency of 44%. The relatively high response at shorter wavelength is due to the unoptimized thickness of p-Al/sub 0.1/Ga/sub 0.9/N absorption layer. At low frequency, the noise of the photodetector is dominant by the 1/f-type noise. For our 330/spl times/330 /spl mu/m/sup 2/ device, given a bias of -3.18 V, the corresponding noise equivalent power and normalized detectivity D/sup */ are calculated to be 5.6/spl times/10/sup -12/ W and 3.34/spl times/10/sup 11/ cmHz/sup 0.5/ W/sup -1/, respectively.  相似文献   

2.
Solar-blind AlGaN-based Schottky photodiodes grown on 4H-SiC substrate are reported. The fabricated devices demonstrate dark current density as low as 2.2/spl times/10/sup -10/ A/cm/sup 2/ at a reverse bias of 5 V. A zero-bias peak responsivity of 44 mA/W was achieved at 256 nm, corresponding to an external quantum efficiency of 21%. Under a low illumination power density of 10 nW/cm/sup 2/, a rejection ratio of more than two orders of magnitude was observed in the wavelength range from 270 to 310 nm. A room-temperature solar-blind detectivity of 7.9/spl times/10/sup 14/ cm/spl middot/Hz/sup 1/2/W/sup -1/ was estimated at 256 nm under zero bias.  相似文献   

3.
GaN metal-semiconductor-metal (MSM) ultraviolet photodetectors with titanium tungsten (TiW) transparent electrodes were fabricated and characterized. It was found that the 10-nm-thick TiW film deposited with a 300-W RF power can still provide a reasonably high transmittance of 75.1% at 300 nm, a low resistivity of 1.7/spl times/10/sup -3/ /spl Omega//spl middot/cm and an effective Schottky barrier height of 0.773 eV on u-GaN. We also achieved a peak responsivity of 0.192 A/W and a quantum efficiency of 66.4% from the GaN ultraviolet MSM photodetector with TiW electrodes. With a 3-V applied bias, it was found that minimum noise equivalent power and maximum D/sup */ of our detector were 1.987/spl times/10/sup -10/ W and 6.365/spl times/10/sup 9/ cmHz/sup 0.5/W/sup -1/, respectively.  相似文献   

4.
AlGaAsSb-InGaAsSb HPTs with high optical gain and wide dynamic range   总被引:2,自引:0,他引:2  
Novel heterojunction phototransistors based on AlGaAsSb-InGaAsSb material systems are fabricated and their characteristics are demonstrated. Responsivity of a phototransistor is measured with applied bias voltage at four different wavelengths. The maximum responsivity around 1400 A/W and minimum noise equivalent power of 1.83/spl times/10/sup -14/ W/Hz/sup 1/2/ from this phototransistor with bias of 4.0 V at a wavelength of 2.05 /spl mu/m were measured at 20/spl deg/C and -20/spl deg/C, respectively. Noise equivalent power of the phototransistor is considerably lower compared with commercially available InGaAs p-i-n photodiodes. Collector current measurements with applied incident power are performed for two phototransistors. Currents of 400 nA at low intensity of 0.425 /spl mu/W/cm/sup 2/ and of 30 mA at high intensity of 100 mW/cm/sup 2/ are determined. Collector current increases nearly by five orders of magnitude between these two input intensities. High and constant optical gain of 500 in the 0.46-nW to 40-/spl mu/W input power range is achieved, which demonstrates high dynamic range for such devices at these power levels.  相似文献   

5.
A resonant tunneling quantum-dot infrared photodetector   总被引:3,自引:0,他引:3  
A novel device-resonant tunneling quantum-dot infrared photodetector-has been investigated theoretically and experimentally. In this device, the transport of dark current and photocurrent are separated by the incorporation of a double barrier resonant tunnel heterostructure with each quantum-dot layer of the device. The devices with In/sub 0.4/Ga/sub 0.6/As-GaAs quantum dots are grown by molecular beam epitaxy. We have characterized devices designed for /spl sim/6 /spl mu/m response, and the devices also exhibit a strong photoresponse peak at /spl sim/17 /spl mu/m at 300 K due to transitions from the dot excited states. The dark currents in the tunnel devices are almost two orders of magnitude smaller than those in conventional devices. Measured values of J/sub dark/ are 1.6/spl times/10/sup -8/ A/cm/sup 2/ at 80 K and 1.55 A/cm/sup 2/ at 300 K for 1-V applied bias. Measured values of peak responsivity and specific detectivity D/sup */ are 0.063 A/W and 2.4/spl times/10/sup 10/ cm/spl middot/Hz/sup 1/2//W, respectively, under a bias of 2 V, at 80 K for the 6-/spl mu/m response. For the 17-/spl mu/m response, the measured values of peak responsivity and detectivity at 300 K are 0.032 A/W and 8.6/spl times/10/sup 6/ cm/spl middot/Hz/sup 1/2//W under 1 V bias.  相似文献   

6.
A dependency of quantum efficiency of nn/sup +/pp/sup +/ silicon complementary metal-oxide-semiconductor integrated light-emitting devices on the current density through the active device areas is demonstrated. It was observed that an increase in current density from 1.6/spl times/10/sup +2/ to 2.2/spl times/10/sup +4/ A/spl middot/cm/sup -2/ through the active regions of silicon n/sup +/pp/sup +/ light-emitting diodes results in an increase in the external quantum efficiency from 1.6/spl times/10/sup -7/ to 5.8/spl times/10/sup -6/ (approximately two orders of magnitude). The light intensity correspondingly increase from 10/sup -6/ to 10/sup -1/ W/spl middot/cm/sup -2//spl middot/mA (approximately five orders of magnitude). In our study, the highest efficiency device operate in the p-n junction reverse bias avalanche mode and utilize current density increase by means of vertical and lateral electrical field confinement at a wedge-shaped n/sup +/ tip placed in a region of lower doping density and opposite highly conductive p/sup +/ regions.  相似文献   

7.
InGaN-GaN multiquantum-well (MQW) metal-semiconductor-metal (MSM) photodetectors (PDs) with the unactivated Mg-doped GaN cap layer were successfully fabricated. It was found that we could achieve a dark current by as much as six orders of magnitude smaller by inserting the unactivated Mg-doped GaN cap layer. For MSM photodetectors with the unactivated Mg-doped GaN cap layer, the responsivity at 380 nm was found to be 0.372 A/W when the device was biased at 5 V. The UV-to-visible rejection ratio was also estimated to be around 1.96 times 103 for the photodetectors with the unactivated Mg-doped GaN cap layer. With a 5-V applied bias, we found that minimum noise equivalent power and normalized detectivity of our PDs were 4.09 times 10-14 W and 1.18 times 1013 cmmiddotHz0.5W-1, respectively. Briefly, incorporating the unactivated Mg-doped GaN layer into the PDs beneficially brings about the suppression of dark current and a corresponding improvement in the device characteristics.  相似文献   

8.
The low-frequency noise characteristics of p-n-p InAlAs/InGaAs heterojunction bipolar transistors (HBTs) were investigated. Devices with various geometries were measured under different bias conditions. The base noise current spectral density (3.11 /spl times/ 10/sup -16/ A/sup 2//Hz) was found to be higher than the collector noise current spectral density (1.48 /spl times/ 10/sup -16/ A/sup 2//Hz) at 10 Hz under low bias condition (I/sub C/=1 mA, V/sub EC/=1 V), while the base noise current spectral density (2.04 /spl times/ 10/sup -15/ A/sup 2//Hz) is lower than the collector noise current spectral density (7.87 /spl times/ 10/sup -15/ A/sup 2//Hz) under high bias condition (I/sub C/=10 mA, V/sub EC/=2 V). The low-frequency noise sources were identified using the emitter-feedback technique. The results suggest that the low-frequency noise is a surface-related process. In addition, the dominant noise sources varied with bias levels.  相似文献   

9.
Nitride-based flip-chip p-i-n photodiodes were fabricated and characterized. It was found that we could achieve a small dark current of 5/spl times/10/sup -10/ A at -5 V and a large rejection ratio larger than three orders of magnitude. It was also found that the photodiodes only detect optical signals with wavelengths between 365 and 378 nm. Furthermore, it was found that peak responsivity occurs at around 370 nm with a value of 0.21 A/W at zero bias which corresponds to 70% external quantum efficiency.  相似文献   

10.
Pt/4H-SiC Schottky photodiodes have been fabricated with the device areas up to 1 cm/sup 2/. The I-V characteristics and photoresponse spectra have been measured and analyzed. For a 5 mm/spl times/5 mm area device leakage current lower than 10/sup -15/ A at zero bias and 1.2/spl times/10/sup -14/ A at -1 V have been established. The quantum efficiency is over 30% from 240 to 320 nm. The specific detectivity, D/sup */, has been calculated from the directly measured leakage current and quantum efficiency are shown to be higher than 10/sup 15/ cmHz/sup 1/2//W from 210 to 350 nm with a peak D/sup */ of 3.6/spl times/10/sup 15/ cmHz/sup 1/2//W at 300 nm.  相似文献   

11.
We report the detailed characteristics of long-wavelength infrared InP-In/sub 0.53/Ga/sub 0.47/As quantum-well infrared photodetectors (QWIPs) and 640/spl times/512 focal plane array (FPA) grown by molecular beam epitaxy. For reliable assessment of the detector performance, characterization was performed on test detectors of the same size and structure with the FPA pixels. Al/sub 0.27/Ga/sub 0.73/As-GaAs QWIPs with similar spectral response (/spl lambda//sub p/=/spl sim/7.8 /spl mu/m) were also fabricated and characterized for comparison. InP-InGaAs QWIPs (20-period) yielded quantum efficiency-gain product as high as 0.46 under -3-V bias with a 77-K peak detectivity above 1/spl times/10/sup 10/ cm/spl middot/Hz/sup 1/2//W. At 70 K, the detector performance is background limited with f/2 aperture up to /spl sim/ 3-V bias where the peak responsivity (2.9 A/W) is an order of magnitude higher than that of the AlGaAs-GaAs QWIP. The results show that impact ionization in similar InP-InGaAs QWIPs does not start until the average electric-field reaches /spl sim/25 kV/cm, and the detectivity remains high under moderately large bias, which yields high responsivity due to large photoconductive gain. The InP-InGaAs QWIP FPA offers reasonably low noise equivalent temperature difference (NETD) even with very short integration times (/spl tau/).70 K NETD values of the FPA with f/1.5 optics are 36 and 64 mK under bias voltages of -0.5 V (/spl tau/=11 ms) and -2 V (/spl tau/=650 /spl mu/s), respectively. The results clearly show the potential of InP-InGaAs QWIPs for thermal imaging applications requiring high responsivity and short integration times.  相似文献   

12.
InGaN/GaN multiquantum well (MQW) p–n junction photodetectors with semi-transparent Ni/Au electrodes were fabricated and characterized. It was found that the fabricated InGaN/GaN MQW p–n junction photodetectors exhibit a 20 V breakdown voltage and a 3.5 V forward 20 mA turn on voltage. It was also found that the photocurrent to dark current contrast ratio is higher than 105 when a 0.4 V reverse bias was applied to the InGaN/GaN MQW p–n junction photodetectors. Furthermore, it was found that the maximum responsivity was 1.28 and 1.76 A/W with a 0.1 and 3 V applied reverse bias, respectively.  相似文献   

13.
Characterization and analysis of photoresponse in p-n diodes with embedded (In,Ga)N-GaN multiple-quantum-well (MQW) structures are reported. Their dependence on the number of wells and In composition are considered. The influence of device structure on electric fields in the active region and on device responsivity has also been studied. Theoretical considerations as well as photocapacitance and photocurrent measurements show that the position of quantum wells (QWs), either in the quasi-neutral region or in the space charge region, is a critical factor in the collection efficiency. Hence, device photoresponse is not proportional to the number of QWs in photovoltaic mode. Present p-MQW-n devices show a promising performance as UVA and visible photodetectors, with detectivities, D/sup */, higher than 1.2/spl times/10/sup 12/ cm/spl middot/Hz/sup 1/2//spl middot/W/sup -1/ and rejection ratios higher than 10/sup 3/.  相似文献   

14.
The self-phase modulation coefficient /spl gamma/ of 1310 nm multiple-quantum-well (MQW) semiconductor optical amplifiers has been investigated. It is found to vary from 16/spl times/10/sup 4/ W/sup -1/ m/sup -1/ for low driving conditions to 3/spl times/10/sup 4/ W/sup -1/ m/sup -1/ for high-driving conditions. This implies that the amount of self-phase modulation occurring in the amplifier is between 1.5-10/spl times/ more than that occurring in the optical fiber following the amplifier. The additional self-phase modulation caused by the semiconductor optical amplifier may be used to achieve compensation for fiber dispersion in optical communication systems at significantly lower average power levels. The linewidth enhancement factor /spl alpha//sub H/ was found to increase from a value of 2 at low driving conditions, in agreement with results reported for MQW lasers, to a value of 3 at high-driving conditions.  相似文献   

15.
CoSi/sub 2/-Si Schottky barrier diodes on an n-well and on a p-well/substrate are fabricated without a guard ring in a 130-nm foundry CMOS process. The nand p-type diodes with an area of 16/spl times/0.32/spl times/0.32 /spl mu/m/sup 2/ achieve cutoff frequencies of /spl sim/1.5 and /spl sim/1.2 THz at 0-V bias, respectively. These are the highest cutoff frequencies for Schottky diodes fabricated in foundry silicon processes. The leakage currents at 1.0-V reverse bias vary between 0.4 to 10 nA for the n-type diodes. The break down voltage for these diodes is around 15 V. It should be possible to use these in millimeter wave and far infrared detection.  相似文献   

16.
Nitride-based light emitting diodes (LEDs) separately prepared with a conventional single low-temperature (LT) GaN nucleation layer and multiple GaN-SiN nucleation layers were both prepared. It was found that we could reduce defect density and thus improve crystal quality of the GaN-based LEDs by using multiple GaN-SiN nucleation layers. With a 20-V applied reverse bias, it was found that the reverse leakage currents measured from the LED with a single LT GaN nucleation layer and the one with 10-pair GaN-SiN nucleation layers were 1.5/spl times/10/sup -4/ and 2.5/spl times/10/sup -6/ A, respectively. It was also determined that we could use the multiple GaN-SiN nucleation layers to enhance the output intensity of near ultraviolet (UV) LEDs and to improve the reliability of nitride-based LEDs.  相似文献   

17.
The non-destructive optical characterization technique of Laser-Beam-Induced-Current (LBIC) imaging has proven useful in qualitatively assessing electrically active defects and localized non-uniformities in HgCdTe materials and devices used for infrared photovoltaic arrays. To further the development of a quantitative working model for LBIC, this paper focuses on the application of the technique to photovoltaic structures that are represented by a discrete element equivalent circuit. For this particular case the LBIC signal arises due to the lateral photovoltaic effect in non-uniformly illuminated open-circuit photodiodes. The outcomes of the model predict all of the experimentally observed geometrical features of the LBIC image and signal. Furthermore, the model indicates that the LBIC signal has an extremely weak dependence on the p-n junction reverse saturation current, and shows a linear dependence with laser power. This latter feature map be useful for non-contact measurement of the quantum efficiency of individual photodiodes within a large two-dimensional focal plane array. The decay of the LBIC signal outside the physical boundary of the p-n junction is of the same form as the roll-off in the short circuit photoresponse and, therefore, can be used to extract the diffusion length of minority carriers. Experimental data is obtained from an arsenic implanted p-on-n junction fabricated on MBE grown Hg/sub 1-x/Cd/sub x/Te material with an x-value of 0.3. The p-on-n diode is shown to be uniform and of high quality with an R/sub 0/A product of 1/spl times/10/sup 8/ /spl Omega//spl middot/cm/sup 2/ at 77 K. The validity of the simple model developed in this paper, is confirmed by the excellent agreement with experimental results. Consequently, the LBIC technique is shown to be an appropriate diagnostic tool for non-contact quantitative analysis of semiconductor materials and devices.<>  相似文献   

18.
We report the growth and fabrication of bound-to-bound In/sub 0.53/Ga/sub 0.47/As-InP quantum-well infrared photodetectors using metal-organic vapor phase epitaxy. These detectors have a peak detection wavelength of 8.5 /spl mu/m. The peak responsivities are extremely large with R/sub pk/=6.9 A/W at bias voltage V/sub b/=3.4 V and temperature T=10 K. These large responsivities arise from large detector gain that was found to be g/sub n/=82 at V/sub b/=3.8 V from dark current noise measurements at T=77 K and g/sub p/=18.4 at V/sub b/=3.4 V from photoresponse data at T=10 K. The background-limited temperature with F/1.2 optics is T/sub BLIP/=65 K for 0相似文献   

19.
High-quality quaternary ZnSTeSe epitaxial layers with uniform carrier concentration of 1/spl times/10/sup 17/ cm/sup -3/ were successfully grown on p-GaAs substrates by molecular beam epitaxy. P-down ZnSTeSe/ZnSe/GaAs heterostructure photodiodes were also fabricated. It was found that the maximum quantum efficiency of the fabricated ZnSTeSe photodiodes was around 75% with a large spectral width of 500 nm.  相似文献   

20.
A novel top-illuminated In/sub 0.53/Ga/sub 0.47/As p-i-n photodiodes (MM-PINPD) grown on GaAs substrate by using linearly graded metamorphic In/sub x/Ga/sub 1-x/P (x graded from 0.49 to 1) buffer layer is reported. The dark current, optical responsivities, noise equivalent power, and operational bandwidth of the MM-PINPD with aperture diameter of 60 /spl mu/m are 13 pA, 0.6 A/W, 3.4/spl times/10/sup -15/ W/Hz/sup 1/2/, and 7.5 GHz, respectively, at 1550 nm. The performances of the MM-PINPD on GaAs are demonstrated to be comparable to those of a similar device made on InGaAs-InP substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号