首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Three new starburst DCM (4‐(dicyanomethylene)‐2‐methyl‐6‐[4‐(dimethylaminostyryl)‐4H‐pyran]) derivatives, 4,4′,4′′‐tris[2‐(4‐dicyanomethylene‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (TDCM), 4,4′,′′‐tris[2‐(4‐(1′,3′‐indandione)‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (TIN), and 4‐methoxy‐4′,4′′‐bis[2‐(4‐(1′,3′‐indandione)‐6‐t‐butyl‐4H‐pyran‐2‐yl)‐ethylene]triphenylamine (MBIN), have been designed and synthesized for application as red‐light emitters in organic light‐emitting diodes (OLEDs). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) reveal their extremely high glass‐transition temperatures and decomposition temperatures, as well as their low tendency to crystallize. Photoluminescence and electroluminescence measurements show that they exhibit a greatly restricted concentration‐quenching effect compared to DCM1 (4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(N,N‐dimethylamino)‐styryl]‐4H‐pyran), a simple but typical DCM‐type dye, as a result of their non‐planar, three‐dimensional structures that result from their unique propeller‐like triphenylamine electron‐donating cores. The peripheral electron‐withdrawing moieties also play a key role in the restriction of concentration quenching. That is, TIN and MBIN, bearing 1,3‐indandione acceptors, emit more efficiently than TDCM and DCM1, which have dicyanomethylene as acceptors at a high doping concentration of 10 wt.‐% in poly(9‐vinylcarbazole) (PVK) film, irrespective of whether they are photoexcited or electroexcited, though their fluorescence quantum yields in dilute solutions are much lower than that of DCM1. By way of the co‐doping approach, the electroluminescence device with the configuration indium tin oxide (ITO)/PVK:MBIN(10 wt.‐%):tris(4‐(2‐phenylethynyl)‐phenyl)amine (TPA; 30 wt.‐%) (70 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 20 nm)/tris(8‐quinolinolato) aluminum (Alq3;15 nm)/LiF (0.3 nm)/Al (150 nm) exhibits a turn‐on voltage of 5.1 V, a maximum luminance of 6971 cd m–2, a maximum efficiency of 6.14 cd A–1 (405 cd m–2), and chromaticity coordinates of (0.66,0.33). The encouraging electroluminescence performance suggests potential applications of the starburst DCM red‐light emitters in OLEDs.  相似文献   

2.
This study describes a new simple method to obtain high loading of anticancer or antiviral nucleoside analogues into “stealth” poly(ethylene glycol) (PEG)‐coated nanoassemblies. These nanodevices are obtained by co‐nanoprecipitation in water of (i) squalenoyl prodrugs obtained by the bioconjugation of the natural lipid squalene with either the anticancer drug gemcitabine (Gem‐Sq) or the antiviral drug deoxycytidine (ddC‐Sq) with (ii) a PEG derivative of either cholesterol (Chol‐PEG) or squalene (Sq‐PEG). It was found that both PEG derivatives (Chol‐PEG or Sq‐PEG) were efficiently incorporated in the resulting composite nanoassemblies (CNAs), as shown by radioactivity studies, Zeta potential determination, and size measurements. Optimal compositions were defined for each PEG derivative to ensure the best stability in water and in buffer solutions. X‐ray diffraction and electron microscopy investigations revealed that depending on the structure of the squalenoyl nucleoside analogue used (Gem‐Sq or ddC‐Sq), these nanoassemblies might be toroids or cubosomes. Following PEGylation, the Gem‐Sq nanoassemblies displayed superior in vitro anticancer activity on gemcitabine‐resistant leukemia L1210 10K cells than either their non‐PEGylated counterparts or gemcitabine alone.  相似文献   

3.
Plastic solar cells have been fabricated using a low‐bandgap alternating copolymer of fluorene and a donor–acceptor–donor moiety (APFO‐Green1), blended with 3′‐(3,5‐bis‐trifluoromethylphenyl)‐1′‐(4‐nitrophenyl)pyrazolino[70]fullerene (BTPF70) as electron acceptor. The polymer shows optical absorption in two wavelength ranges, λ < 500 nm and 600 < λ < 1000 nm. The BTPF70 absorbs light at λ < 700 nm. A broad photocurrent spectral response in the wavelength range 300 < λ < 1000 nm is obtained in solar cells. A photocurrent density of 3.4 mA cm–2, open‐circuit voltage of 0.58 V, and power‐conversion efficiency of 0.7 % are achieved under illumination of AM1.5 (1000 W m–2) from a solar simulator. Synthesis of BTPF70 is presented. Photoluminescence quenching and electrochemical studies are used to discuss photoinduced charge transfer.  相似文献   

4.
We report the synthesis and excellent two‐photon‐sensitized luminescence properties of a new complex [Eu(tta)3dmbpt] (tta = henoyltrifluoroacetonate; dmbpt = 2‐(N,N‐diethyl‐2,6‐dimethylanilin‐4‐yl)‐4,6‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,3,5‐triazine) that exhibits the highest efficiency of lanthanide luminescence when excited by near‐infrared (NIR) laser pulses (action cross section of two‐photon‐excited fluorescence δ × ΦF: 85 GM at 812 nm and 56 GM at 842 nm; 1 GM = 10–50 cm4 s photon–1 molecule–1). Compared to a previously reported [Eu(tta)3dpbt] complex, (dpbt = 2‐(N,N‐diethylanilin‐4‐yl)‐4,6‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,3,5‐triazine), [Eu(tta)3dmbpt] has two excess methyl groups at the 2,6‐positions of the phenyl ring. Crystallographic data of dmbpt show that the 2,6‐dimethyl substitutes bring about a significant twist in the conformation of the diethylamino group compared to that in dpbt, which severely influences the conjugation in the ground state between the electron lone pair of N in the –N(CH2–)2 moiety and the aromatic electron system in dmbpt. The large two‐photon absorption (TPA) cross section of dmbpt is mainly derived from its large static dipole moment difference between the S0 and the S1 states, which is partly responsible for the high capability of two‐photon‐sensitized luminescence of [Eu(tta)3dmbpt]. The broader two‐ and single‐photon excitation windows and the superior two‐photon‐sensitized luminescent properties in the long‐wavelength NIR region of [Eu(tta)3dmbpt] compared to [Eu(tta)3dpbt] are also explained according to the calculated results and twisted structure.  相似文献   

5.
A series of orange‐red to red phosphorescent heteroleptic CuI complexes (the first ligand: 2,2′‐biquinoline (bq), 4,4′‐diphenyl‐2,2′‐biquinoline (dpbq) or 3,3′‐methylen‐4,4′‐diphenyl‐2,2′‐biquinoline (mdpbq); the second ligand: triphenylphosphine or bis[2‐(diphenylphosphino)phenyl]ether (DPEphos)) have been synthesized and fully characterized. With highly rigid bulky biquinoline‐type ligands, complexes [Cu(mdpbq)(PPh3)2](BF4) and [Cu(mdpbq)(DPEphos)](BF4) emit efficiently in 20 wt % PMMA films with photoluminescence quantum yield of 0.56 and 0.43 and emission maximum of 606 nm and 617 nm, respectively. By doping these complexes in poly(vinyl carbazole) (PVK) or N‐(4‐(carbazol‐9‐yl)phenyl)‐3,6‐bis(carbazol‐9‐yl) carbazole (TCCz), phosphorescent organic light‐emitting diodes (OLEDs) were fabricated with various device structures. The complex [Cu(mdpbq)(DPEphos)](BF4) exhibits the best device performance. With the device structure of ITO/PEDOT/TCCz:[Cu(mdpbq)(DPEphos)](BF4) (15 wt %)/TPBI/LiF/Al (III), a current efficiency up to 6.4 cd A–1 with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.61, 0.39) has been realized. To our best knowledge, this is the first report of efficient mononuclear CuI complexes with red emission.  相似文献   

6.
With the rapid development of nanotechnology during the last decades, the ability to detect and control individual objects at the nanoscale has enabled us to deal with complex biomedical challenges. In cancer imaging, novel nanoparticles (NPs) offer promising potential to identify single cancer cells and precisely label larger areas of cancer tissues. Herein, a new class of size tunable core–shell composite (Au–SiO2–WO3) nanoparticles is reported. These nanoparticles display an easily improvable ≈103 surface‐enhanced Raman scattering (SERS) enhancement factor with a double Au shell for dried samples over Si wafers and several orders of magnitude for liquid samples. WO3 core nanoparticles measuring 20–50 nm in diameter are sheathed by an intermediate 10–60 nm silica layer, produced by following the Stöber‐based process and Turkevich method, followed by a 5–20 nm thick Au outer shell. By attaching 4‐mercaptobenzoic acid (4‐MBA) molecules as Raman reporters to the Au, high‐resolution Raman maps that pinpoint the nanoparticles' location are obtained. The preliminary results confirm their advantageous SERS properties for single‐molecule detection, significant cell viability after 24 h and in vitro cell imaging using coherent anti‐stokes Raman scattering. The long‐term objective is to measure SERS nanoparticles in vivo using near‐infrared light.  相似文献   

7.
2‐(2‐tert‐Butyl‐6‐((E)‐2‐(2,6,6‐trimethyl‐2,4,5,6‐tetrahydro‐1H‐pyrrolo[3,2,1‐ij]quinolin‐8‐yl)vinyl)‐4H‐pyran‐4‐ylidene)malononitrile (DCQTB) is designed and synthesized in high yield for application as the red‐light‐emitting dopant in organic light‐emitting diodes (OLEDs). Compared with 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7,‐tetramethyljulolidyl‐9‐enyl)‐4H‐pyran (DCJTB), one of the most efficient red‐emitting dopants, DCQTB exhibits red‐shifted fluorescence but blue‐shifted absorption. The unique characteristics of DCQTB with respect to DCJTB are utilized to achieve a red OLED with improved color purity and luminous efficiency. As a result, the device that uses DCQTB as dopant, with the configuration: indium tin oxide (ITO)/N,N′‐bis(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB; 60 nm)/tris(8‐quinolinolato) aluminum (Alq3):dopant (2.3 wt %) (7 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 12 nm)/Alq3(45 nm)/LiF(0.3 nm):Al (300 nm), shows a larger maximum luminance (Lmax = 6021 cd m–2 at 17 V), higher maximum efficiency (ηmax = 4.41 cd A–1 at 11.5 V (235.5 cd m–2)), and better chromaticity coordinates (Commission Internationale de l'Eclairage, CIE, (x,y) = (0.65,0.35)) than a DCJTB‐based device with the same structure (Lmax = 3453 cd m–2 at 15.5 V, ηmax = 3.01 cd A–1 at 10 V (17.69 cd m–2), and CIE (x,y) = (0.62,0.38)). The possible reasons for the red‐shifted emission but blue‐shifted absorption of DCQTB relative to DCJTB are also discussed.  相似文献   

8.
The development of red thermally activated delayed fluorescence (TADF) emitters having excellent optoelectronic properties and satisfactory electroluminescence efficiency is full of challenges due to strict molecular design principles. Two red TADF molecules, 3‐(9,9‐dimethylacridin‐10(9H)‐yl)acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile and 3‐(2,7‐dimethyl‐10H‐spiro[acridine‐9,9′‐fluoren]‐10‐yl)acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile, are developed by adopting a donor–acceptor molecular architecture bearing an electron‐accepting acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile (ANQDC) moiety and a 9,9‐dimethyl‐9,10‐dihydroacridine or 2,7‐dimethyl‐10H‐spiro[acridine‐9,9′‐fluorene] electron donor. The combined effects of rigid and planar D/A moieties and highly steric hindrance between D and A groups endow both molecules with high rigidity to suppress nonradiative decay processes, resulting in high photoluminescence quantum efficiencies (ΦPLs) of up to 95%. Attributed to the linear and planar acceptor motif and rod‐like molecular configuration, both emitters achieve high horizontal ratios of emitting dipole orientation of ≈80%. The organic light‐emitting diodes (OLEDs) based on both emitters exhibit red emissions peaking at ≈615 nm and successfully afford ultrahigh electroluminescence performance with an external quantum efficiency of nearly 28% and a power efficiency of above 50 lm W?1, on par with the state‐of‐the‐art device efficiency for red TADF OLEDs. This presents a feasible design strategy for excellent TADF emitters simultaneously possessing high ΦPLs and horizontally aligned emitting dipoles.  相似文献   

9.
A novel red phosphorescent iridium complex containing a carbazole‐functionalized β‐diketonate, Ir(DBQ)2(CBDK) (bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐diketonate)) is designed, synthesized, and characterized. The electrophosphorescence properties of a nondoped device using the title complex as an emitter with a device configuration of indium tin oxide (ITO)/N,N′‐diphenyl‐N,N′‐bis(1‐naphthyl)‐1,1′‐diphenyl‐4,4′‐diamine (NPB; 20 nm)/iridium complex (20 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 5 nm)/tris(8‐hydroxyquinoline) (AlQ; 30 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) are examined. The results show that the nondoped device achieves a maximum lumen efficiency as high as 3.49 lm W–1. To understand this excellent result observed, two reference complexes Ir(DBQ)2(acac), where acac is the acetyl acetonate anion, and Ir(DBQ)2(FBDK), [bis(dibenzo[f,h]quinoxalinato‐N,C2) iridium (1‐(9‐methyl‐fluoren‐9‐yl)‐6,6‐dimethylheptane‐3,5‐diketonate)], have also been synthesized, and as emitters they were examined under the same device configuration. The maximum lumen efficiency of the former compound is found to be 0.26 lm W–1 while that for the latter is 0.37 lm W–1, suggesting that the excellent performance of Ir(DBQ)2(CBDK) can be attributed mainly to an improved hole‐transporting property that benefits the exciton transport. In addition, a bulky diketonate group separates the emitter centers from each other, which is also important for organic light‐emitting diodes.  相似文献   

10.
Wide and long ribbons of single‐crystalline SnO2 have been achieved via laser ablation of a SnO2 target. Transmission electron microscopy (TEM) shows the as‐grown SnO2 ribbons are structurally perfect and uniform, with widths of 300–500 nm, thicknesses of 30–50 nm (width‐to‐thickness ratio of ~ 10), and lengths ranging from several hundreds of micrometers to the order of millimeters. X‐ray diffraction (XRD) pattern and energy‐dispersive X‐ray spectroscopy (EDS) spectral analysis indicate that the ribbons have the phase structure and chemical composition of the rutile form of SnO2. Selected‐area electron diffraction (SAED) patterns and high‐resolution TEM images reveal that the ribbons are single crystals and grow along the [100] crystal direction. Photoluminescence measurements show that the synthesized SnO2 ribbons have one strong emission band at ~ 605 nm and a red‐shift of ~ 30 nm, as compared to standard SnO2 powder, which may be attributed to crystal defects and residual strains accommodated during the growth of the ribbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号