首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文基于新媒体视野,从虚拟博物馆建设方案、建设构想两个层面展开研究,建设方案重点突出虚拟博物馆建设基本环节、重点平台建设研究;建设构建主要围绕用户群、设计内容与展示语言、建设团队等展开研究,以提升虚拟博物馆建设水平.  相似文献   

2.
国内信息化建设起步于上世纪90年代,经过多年的发展,各组织单位信息化建设取得了突破性进展,信息系统顺利完成由局部应用到全面覆盖、由辅助管理到支撑生产经营、由分布处理到数据集中的转变,开始步入成熟阶段。在信息化建设的过程中,同时也进行了信息系统安全建设。信息系统安全建设一般经过了分散建设阶段、系统化建设阶段、一体化建设阶段。在不同的阶段,采取  相似文献   

3.
李庭贵 《电子科技》2012,25(9):151-153
开发立体化教学资源建设,有利于提高课程的教学质量,实现精品课程优质教学资源的全面开放。文中着重阐述了单片机应用技术课程立体化教学资源建设的内容,其主要包括教材建设、教学团队建设、网络课程建设、课程实训基地建设等。  相似文献   

4.
目前是数字化时代,数字化整体转换工作的完成有赖于整体机房建设工作的完成。涉及到工作中的各个环节,这些环节有机房选址、机房装修以及环境配套建设等等,这些都对整个机房建设比较严格。笔者重点介绍的是县级数字机房建设工作选址的重要性,涉及的主要内容有建设位置的选址、建设的技术要求、建设的环境要求、建设的功能保障等等。  相似文献   

5.
针对传统城市建设模式下规划、建设、城市管理脱节的状况,文章以福州滨海新城规建管一体化平台的建设为例,通过建设统一的大数据平台,打通规划、建设、管理的数据壁垒,将规划设计、建设管理、竣工移交、市政管理进行有机融合。探讨如何实现规、建、管统筹协调和资源共享,在建设城市过程中同步形成与实体城市"孪生"的数字城市,为精细化城市管理提供技术支撑,积累城市大数据资产的一种新型建设模式。  相似文献   

6.
职业院校在数字化校园建设上还存在认识、资金投入、人员结构等方面问题,本文从什么是数字化校园,为什么建设,如何建设,建设内容以及建设困境等五方面阐述数字化校园建设的必要性.  相似文献   

7.
张旭凯 《通讯世界》2016,(2):101-102
随着医院信息化建设的深入,医院中心机房建设也倍受关注.建设专业化、标准化的医院中心机房是实现医院现代化、信息化建设的重要保障.本文分析医院信息化建设中存在的问题,探讨医院中心机房建设.  相似文献   

8.
文章从主要问题、建设必要性、建设目标、建设内容和保障措施等方面,概要论述了智慧城市的建设方案,重点阐述智慧城市建设"两中心、一平台和N应用"。  相似文献   

9.
信息化建设是每个高校发展必不可少的建设内容,只有实现数字化校园才能使一个高校教学实现跨跃式的发展,学院数字化校园的建设为信息化发展壮大起到了至关重要的作用。从宏观角度看,涉及高校的教学、科研、管理和社会服务等诸领域;从微观来说,则包括信息基础设施建设、信息资源建设、技术队伍建设、应用系统建设和教师技能培训等。  相似文献   

10.
建设县级融媒体中心,能实现对网络基础设施资源的充分利用,分析县级融媒体中心建设的必要性,探究建设县级融媒体中心的实施路径,从建设要素、建设原则、资源优化、管理体系、连接端口5方面进行讨论,希望能为大家提供参考意见。  相似文献   

11.
Three alternative schemes for secure Virtual Private Network (VPN) deployment over the Universal Mobile Telecommunication System (UMTS) are proposed and analyzed. The proposed schemes enable a mobile node to voluntarily establish an IPsec-based secure channel to a private network. The alternative schemes differ in the location where the IPsec functionality is placed within the UMTS network architecture (mobile node, access network, and UMTS network border), depending on the employed security model, and whether data in transit are ever in clear-text, or available to be tapped by outsiders. The provided levels of privacy in the deployed VPN schemes, as well as the employed authentication models are examined. An analysis in terms of cost, complexity, and performance overhead that each method imposes to the underlying network architecture, as well as to the mobile devices is presented. The level of system reliability and scalability in granting security services is presented. The VPN management, usability, and trusted relations, as well as their behavior when a mobile user moves are analyzed. The use of special applications that require access to encapsulated data traffic is explored. Finally, an overall comparison of the proposed schemes from the security and operation point of view summarizes their relative performance. Christos Xenakis received his B.Sc. degree in computer science in 1993 and his M.Sc. degree in telecommunication and computer networks in 1996, both from the Department of Informatics and Telecommunications, University of Athens, Greece. In 2004 he received his Ph.D. from the University of Athens (Department of Informatics and Telecommunications). From 1998–2000 was with the Greek telecoms system development firm Teletel S.A., where was involved in the design and development of advanced telecommunications subsystems for ISDN, ATM, GSM, and GPRS. Since 1996 he has been a member of the Communication Networks Laboratory of the University of Athens. He has participated in numerous projects realized in the context of EU Programs (ACTS, ESPRIT, IST). His research interests are in the field of mobile/wireless networks, security and distributed network management. He is the author of over 15 papers in the above areas. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was on the faculty of Electrical Engineering and Computer Science at the University of Connecticut, Storrs. From 1986 to 1994 he was on the faculty of the Electrical and Computer Engineering Department at Northeastern University, Boston, MA. During the period 1993–1994 he served as Director of the Communications and Digital Processing Research Center at Northeastern University. During the summers of 1990 and 1991, he was a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a Professor in the Department of Informatics and Telecommunications, and Director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. His research interests are in the design and performance analysis of broadband networks, and wireless/mobile communication systems and services. He has authored more than 150 papers in the above areas. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies & Services (ACTS) and Information Society Technologies (IST) programmes funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE). He is chairman of the board of the Greek Universities Network, the Greek Schools Network, and member of the board of the Greek Research Network. In 1994, he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

12.
We present a new method for data integration and security by mixing medical waveforms and images with encrypted patient identifiers and unencrypted ancillary information, such as acquisition parameters, diagnostic comments and notes in textual, pictorial, and voice forms. We vary the sampling rate according to the instantaneous frequency of the signal. Redundant samples (or pixels) are eliminated and replaced by associative data which are labeled using a status string encoded based on the Huffman and run-length techniques. This method achieves both data compression and integration simultaneously, allows synchronized presentation of information from different sources by using multimedia technology, and provides data security features. Mingui Sun received a B.S. degree from the Shenyang Chemical Engineering Institute, China, in 1982, and M.S. and Ph. D. degrees in Electrical Engineering from the University of Pittsburgh in 1986 and 1989, respectively. He was a Graduate Student Researcher from 1985 to 1989 working on signal and image processing projects. Currently, he is a Associate Professor and an Associate Director of the Center for Clinical Neurophysiology in the Department of Neurosurgery at the University of Pittsburgh, and a Director of Research at Computational Diagnostics, Inc. His current research and development interests include advanced biomedical electronic devices, biomedical signal and image processing, sensors and transducers, biomedical instruments, artificial neural networks, wavelet transforms, time-frequency analysis, and the inverse problem of neurophysiological signals. He has over 160 publications in these areas. Qiang Liu received his B.S. and M.S. degrees in electrical engineering from Xidian University, Xian, China, in 1996 and 1999 respectively. He is currently a Ph.D. student at the University of Pittsburgh, Pittsburgh, USA. His further research interests include biomedical signal processing, medical imaging, and image/video segmentation, coding and transmission. Robert J. Sclabassi received the B.S.E. degree from Loyola University, Los Angeles, the M.S.E.E., Engineer in Electrical Engineering, and Ph.D. degrees in electrical engineering from the University of Southern California, and the M.D. degree from the University of Pittsburgh. He was employed in the Advanced Systems Laboratory at TRW, Los Angeles, and was a postdoctoral fellow at the Brain Research Institute at the University of California, Los Angeles. He was on the faculties of Department of Neurology and Biomathematics at UCLA until he joined the University of Pittsburgh. Dr. Sclabassi is currently a Professor of Neurological Surgery, Psychiatry, Electrical Engineering, Mechanical Engineering, Psychiatry, and Behavioral Neuroscience at the University of Pittsburgh. Dr. Sclabassi has published over 400 papers, chapters and conference proceedings. Dr. Sclabassi is a Registered Professional Engineer.  相似文献   

13.
现代通信网络应能满足各种通信业务和通信容量日益发展的需求,实现话音、数据、视频、IP等业务的一体化综合交换和传输。在比较TDM、IP和ATM三种协议的基础上,提出"采用内置RPR和MPLS功能的MSTP平台"建设光纤综合通信网络平台的实现方法。MSTP采用SDH的数据帧结构,保持了SDH标准光接口、灵活分插低速信号、自愈环保护和功能强大的网管等优点,可对TDM、IP和ATM协议进行优化传输。  相似文献   

14.
Adhering hydrogels to various materials is fundamental to a large array of established and emerging applications. The last few years have seen transformative advances in achieving strong hydrogel adhesion, which is a supramolecular phenomenon. Two adherends connect through covalent bonds, noncovalent complexes, polymer chains, polymer networks, or nanoparticles. Separating the adherends dissipates energy through cascading events across length scales, including bond cleavage, chain retraction, and bulk hysteresis. A unifying principle has emerged: strong hydrogel adhesion requires the synergy of chemistry of bonds, topology of connection, and mechanics of dissipation. This synergy characterizes hydrogel adhesion to various materials (another hydrogel, tissue, elastomer, plastic, metal, glass, and ceramic) in various operations (cast, coat, print, attach, pierce, and glue). Strong adhesion can be made permanent, reversible, degradable, or on‐demand detachable. The development of hydrogel adhesion and its applications adheres disciplines, discovers interlinks, and forges cohesion. Discussed throughout the review are immediate opportunities for fundamental studies and practical applications.  相似文献   

15.
微电子封装的新进展领域及对SMT的新挑战   总被引:2,自引:0,他引:2  
介绍了几种微电子新型封装材料,如LTCC、AIN、金刚石、AI-Sic和无铅焊接材料等,论述了正在发展中的新型先进封装技术,如WLP、3D和SIP等,并对封装新领域MEMS和MOEMS作了简介.最后,就这些新技术对SMT的新挑战作了些探讨.  相似文献   

16.
One of the most important and challenging issues in the design of personal communication service (PCS) systems is the management of location information. In this paper, we propose a new fault-tolerant location management scheme, which is based on the cellular quorum system. Due to quorum's salient set property, our scheme can tolerate the failures of one or more location server(s) without adding or changing the hardware of the systems in the two-tier networks. Meanwhile, with a region-based approach, our scheme stores/retrieves the MH location information in the location servers of a quorum set of the local region as much as possible to avoid long delays caused by the possible long-distance of VLR and HLR. Thus, it yields better connection establishment and update delay. Ming-Jeng Yang received the M.S. degree in computer science from the Syracuse University, New York, in 1991, and the Ph.D. degree in computer science from National Taiwan Normal University, Taiwan, in 2004. He is an associate professor in the Department of Information Technology, Takming College, Taiwan. His research interests include wireless networks, mobile computing, fault-tolerant computing, and distributed computing. He is a member of the IEEE Computer Society and the ACM. Yao-Ming Yeh received the B.S. degree in computer engineering from National Chiao-Tung University, Taiwan, in 1981, and the M.S. degree in computer science and information engineering from National Taiwan University, Taiwan, in 1983. In August 1991, he received the Ph.D. degree in the Department of Electrical and Computer Engineering, The Pennsylvania State University, Pa., U.S.A. He is a professor in the Department of Information and Computer Education, National Taiwan Normal University, Taiwan. His research interests include fault-tolerant computing, web and XML computing, and distributed computing.  相似文献   

17.
Global consensus on the next generation of wireless mobile communications, broadly termed “beyond 3G”, sketches a heterogeneous infrastructure comprising different wireless systems in a complementary manner and vested with reconfiguration capabilities, which support a flexible and dynamic adaptation of the wireless network and its spectrum resources to meet the ever-changing service requirements. For ubiquitous reconfiguration to become a practical capability of mobile communication systems, it is necessary to establish a global architecture for modeling, expressing, and circulating essential metadata related to reconfiguration, including reconfigurable device capabilities and semantic properties of protocol stacks. We outline the relevant standardization initiatives in the mobile domain, summarize existing work in reconfiguration-supporting architectures, and identify key shortcomings that may hinder the advent of ubiquitously reconfigurable systems. Further on, we point out some major limitations of current metadata standards in the mobile domain for the representation of capability information pertaining to reconfigurable protocol stacks. Next, we identify essential metadata classes in support of reconfigurable communication systems, introducing an associated object-oriented UML model. We elaborate on the design rationale of the UML model, presenting and discussing the alternative metadata representation standards and suitable encoding formats. Finally, we demonstrate the suitability of our UML model by applying our reconfiguration-supporting vocabulary in the cases of a standardized protocol stack of 3G mobile devices and stationary 3G cellular network elements. Vangelis Gazis received his B.Sc. and M.Sc. (Communication Networking) degrees from the Department of Informatics & Telecommunications of the University of Athens, Greece, in 1995, and 1998, respectively. He also received an M.B.A. degree from the Athens University of Economics and Business in 2001. Since 1996 until, he has been with the research staff of the Communication Networks Laboratory (CNL) of the University of Athens. He has participated in national and European research projects (MOBIVAS, ANWIRE) of the IST framework programme. He specializes in reconfigurable mobile systems and networks for beyond 3G, metadata and ontology languages, reflective and component middleware, adaptable services and open API frameworks for telecommunications. He is currently a Ph.D. candidate in the Department of Informatics & Telecommunications of the University of Athens. Nancy Alonistioti holds a B.Sc. degree and a Ph.D. degree in informatics and telecommunications from the University of Athens. Presently, she is a senior researcher in the Department of Informatics and Telecommunications of the University of Athens. In the past, she has held a research position with the Institute of Informatics and Telecommunications of NCSR “Demokritos” in the areas of protocol and service design and testing, mobile systems (UMTS), open architectures, and software defined radio systems and networks. Her current research interests are in reconfigurable mobile systems and networks beyond 3G, and adaptable services, pervasive computing and context awareness. She has participated in several national and European R&D projects, and has been the technical manager of the IST-MOBIVAS and IST-ANWIRE projects, which have had a focus on reconfigurable mobile systems, networks an respective service provision. She is currently a member of the management team and workpackage leader in the FP6 IST-E2R project on reconfigurability; she also serves as technical manager for the University of Athens in the FP6 IST-LIAISON project, which focuses on location based services in working environments. Dr Alonistioti is co-editor and co-author of the book entitled “Software defined radio, Architectures, Systems and Functions”, published by John Wiley in May 2003. She has authored over 55 publications in the area of mobile communications and reconfigurable systems and networks. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was on the faculty of the Electrical Engineering and Computer Science Department, University of Connecticut, Storrs. From 1986 to 1994, he was on the faculty of the Electrical and Computer Engineering Department, Northeastern University, Boston, MA. During the period 1993D1994, he served as Director of the Communications and Digital Processing Research Center, Northeastern University. During the summers of 1990 and 1991, he was a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a Professor in the Department of Informatics and Telecommunications, and Director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies and Services (ACTS) and Information Society Technologies (IST) programs funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE, E2R, LIAISON). His research interests are in the design and performance analysis of communication networks, and wireless/mobile communication systems and services. He has authored more than 190 papers in the above areas. Dr. Merakos is Chairman of the Board of the Greek Universities Network, the Greek Schools Network, and Member of the Board of the Greek Research Network. In 1994, he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

18.
孙忠贵  高新波  张冬梅  李洁  王颖 《电子学报》2018,46(8):1969-1975
近年,形态学非局部拓展工作在图像处理领域受到众多关注.而附益性算子是经典形态学的最基本形式,也是形态学分析方法最重要的变换工具.为此,一些研究者就形态学非局部拓展中如何保持算子的附益性开展工作.本文从理论及实例两个方面说明,相关拓展工作为保持算子的附益性而丢失了保序性的不足;进一步,通过设计非局部权值的获取过程,并结合现有工作,本文提出了一个新的形态学非局部拓展,并定理证明了所得算子同时具备附益性及保序性两个重要性质;人工合成图像及自然图像上的仿真实验也表明了本文所提算法的有效性.  相似文献   

19.
LTE和LTE-Advanced关键技术综述   总被引:2,自引:0,他引:2  
为满足移动宽带业务的需要,LTE正日渐成熟,它采用扁平化网络架构,关键技术包括OFDM、更高阶调制、HARQ、先进的多天线技术、快速同步技术、灵活的控制信道设计、自适应资源分配、干扰抑制技术等。有关LTE-Advanced的讨论也以展开,考虑的技术包括聚合多载波、高阶MIMO、智能中继、异构网络、协调多点发送和先进的干扰管理。  相似文献   

20.
This paper describes a 10 bit 30 Msample/s (MSPS) CMOS analog-to-digital converter (ADC) for high-speed signal processing, especially for subsampling applications, for example digital video broadcasting over cable (DVB-C), terrestrial (DVB-T) and handheld (DVB-H) systems. The proposed pipelined ADC shows a good figure-of-merit (FoM). It adopts a power efficient amplifier sharing technique, a symmetrical gate-bootstrapping technique with modified timing for the bottom-sampling switch of a wideband sample-and-hold (S/H) circuit, a proposed stable high-swing bias circuit for a wide-swing gain-boosting telescopic amplifier. The measured differential and integral nonlinearities of the prototype in a 0.25-μm CMOS technology show less than 0.4 least significant bit (LSB) and 0.85 LSB respectively at full sampling rate. The ADC exhibits higher than 9 effective number of bits (ENOB) for input frequencies up to about 60 MHz, which is the fourfold Nyquist rate (fs/2), at 30 MSPS. The ADC consumes 60 mW from a 3-V supply and occupies about 1.36 mm2. Jian Li received the Bachelor of Engineering (B.E.) degree in electronic engineering from Xi’an Jiaotong University, Xi’an, China, in 2003. He is currently working toward the Ph.D. degree at Microelectronics department, Fudan University, Shanghai, China. His current research interest is high-speed high resolution A/D converter design. Xiaoyang Zeng was born in Hunan Province, P.R. China on April 17, 1972. He received the B.S. degree from Xiangtan University, China in 1992, and the Ph.D. degree from Changchun Institute of Optics and Fine Mechanics, Chinese Academy of Sciences in 2001. From 2001 to 2003, he worked as a post-doctor researcher at the State-Key Lab of ASIC & System, Fudan University, P.R. China. Then he joined the faculty of Department of Micro-electronics at Fudan University as an associate professor. His research interests include information security chip design, VLSI signal processing, and communication systems. Prof. Zeng is the Chair of Design-Contest of ASP-DAC 2004 and 2005, also the TPC member of several international conferences such as ASCON 2005 and A-SSCC 2006, etc. Jianyun Zhang received the B.S., M.S. and Ph.D degree in electrical engineering from Fudan University, Shanghai, China in 1997, 2000 and 2006 respectively. From 2000 to 2002, he was with Alcatel microelectronics, Belgium, where he was involved in circuit design for GSM and GPRS. In 2002, he joined Trident microsystem, where he concentrated on the design of Video AFE including data converters and mixed signal circuits. In 2005, he joined Shihong microelectronics Corp., where he is now a director of mixed signal IC for video high speed interface. His research interests include data conversion, HDMI SerDes, and analog circuit design. Lei Xie received the Bachelor of Science (B.S.) degree in microelectronics from Nankai University, Tianjin, China, in 2005. He is currently working toward the M.S. degree at Fudan University, Shanghai, China. His current research interest is high-speed high resolution A/D converter. Huan Deng received the B.S. degree in microelectronics from Fudan University, Shanghai, P.R. China, in 2003. He is currently working toward the M.S. degree in microelectronics at the State Key Lab of ASIC & System, Fudan University. He is currently involved in the design of low-power, high-speed PLL’s. Yawei Guo received the B.S. and M.S. degree in electrical engineering from Fudan University in 1999 and 2002 respectively. From 2002 to August 2003, he was with Philips Semiconductors in Shanghai. Since August 2003, he has been with Shanghai MicroScience Integrated Circuits Co., Ltd., based in Shanghai, P. R. China. He has been leading a group and developing analog and mixed signal circuits. His research interests include high-speed data communication, data converters, and phase locked loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号