首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter presents for the first time, the experimentally determined majority carrier mobilities in the accumulation layer of a MOSFET for both p-type and n-type channel doping for a wide range of doping concentrations. The measured carrier mobility is observed to follow a universal behavior at high transverse fields, similar to that observed for minority carriers in MOS inversion layers. At the higher doping levels, the effective mobility for majority carriers at low to moderate transverse fields is found to be very close to the bulk mobility. This is believed to be due to carrier screening of the ionized impurity scattering which dominates at the higher doping concentrations  相似文献   

2.
A comprehensive model of effective (average) mobility and local-field mobility for holes in MOSFET inversion layers is presented. The semiempirical equation for effective mobility, coupled with the new local-field mobility model, permits accurate two-dimensional simulation of source-to-drain current in MOSFETs. The model accounts for the dependence of mobility on transverse and longitudinal electric fields, channel doping concentration, fixed interface charge density, and temperature. It accounts not only for the scattering by fixed interface charges, and bulk and surface acoustic phonons, but it also correctly describes screened Coulomb scattering at low effective transverse fields (near threshold) and surface roughness scattering at high effective transverse fields. The model is therefore applicable over a much wider range of conditions compared to earlier reported inversion layer hole mobility models while maintaining a physically based character  相似文献   

3.
A detailed study is presented of multicarrier transport properties in liquid-phase epitaxy (LPE)-grown n-type HgCdTe films using advanced mobility spectrum analysis techniques over the temperature range from 95 K to 300 K. Three separate electron species were identified that contribute to the total conduction, and the temperature-dependent characteristics of carrier concentration and mobility were extracted for each individual carrier species. Detailed analysis allows the three observed contributions to be assigned to carriers located in the bulk long-wave infrared (LWIR) absorbing layer, the wider-gap substrate/HgCdTe transition layer, and a surface accumulation layer. The activation energy of the dominant high-mobility LWIR bulk carrier concentration in the high temperature range gives a very good fit to the Hansen and Schmit expression for intrinsic carrier concentration in HgCdTe with a bandgap of 172 meV. The mobility of these bulk electrons follows the classic μ ~ T −3/2 dependence for the phonon scattering regime. The much lower sheet densities found for the other two, lower-mobility electron species show activation energies of the order of ~20 meV, and mobilities that are only weakly dependent on temperature and consistent with expected values for the wider-bandgap transition layer and a surface accumulation layer.  相似文献   

4.
The field and temperature dependence of the Hall coefficient has been used to simultaneously extract information about the p and n layers in very long wave length infrared P/n HgCdTe heterojunctions. The field dependence allows the effects of high mobility electrons to be separated from those of low mobility holes. The higher the magnetic field, the higher the sensitivity to the parameters of the P layer. For a maximum magnetic field of 8000 gauss, the hole sheet concentration must be at least five times the electron sheet concentration to obtain accurate results for the P layer. This criterion is satisfied for typical liquid phase epitaxy (LPE) heterostructures. The analysis determines the hole sheet resistance (concentration times mobility), rather than the hole concentration or mobility separately. Independent knowledge of the P layer thickness and the relationship between hole concentration and resistivity are needed to convert the Hall measurement results to hole concentrations. Analysis of the field-dependent Hall data is complicated by the finding that at least three electrons of different mobilities are needed to fit the field dependence of the Hall coefficient in n-type LPE HgCdTe layers. These results are consistent with previous conclusions that electrons with different mobilities are needed to model bulk n-HgCdTe, and with a range of mobilities in the graded composition interface between the LPE layer and CdTe substrate. Consistent results are obtained for the concentrations and mobilities of the three types of electrons in the n-HgCdTe layer with and without the P layer present. N and P type carrier concentrations are also consistent with dopant concentrations measured by secondary ion mass spectroscopy.  相似文献   

5.
A new, comprehensive, physically-based, semiempirical, local model for transverse-field dependent electron and hole mobility in MOS transistors is presented. In order to accurately predict the measured relationship between the effective mobility and effective electric field over a wide range of substrate doping and bias, we account for the dependence of surface roughness limited mobility on the inversion charge density, in addition to including the effect of coulomb screening of impurities by charge carriers in the bulk mobility term. The result is a single mobility model applicable throughout a generalized device structure that gives good agreement with measured mobility data and measured MOS I-V characteristics over a wide range of substrate doping, channel length, transverse electric field, substrate bias, and temperature  相似文献   

6.
We have made use of a stepped doping profile to improve the performance of strained-Si ultra-short MOSFETs. Electron mobility curves are calculated by a Monte Carlo simulator including electron quantization and Coulomb scattering, in addition to phonon and surface roughness scattering. In the first part of the paper, the effect of Coulomb scattering due to both interface charges and bulk impurities is carefully analyzed. We show that the strain enhances the Coulomb-limited mobility due to the interface-trapped charges as a consequence of a better screening of these charges by mobile carriers. However, we also show that this improvement in the Coulomb-limited mobility does not occur if the Coulomb scattering is due to bulk doping impurities, since they share the same physical spare with the carriers, and therefore the screening is the same for the same inversion charge concentration. Nevertheless, we have shown that the use of a stepped doping profile bypasses this inconvenience. The introduction of a low doped layer below the oxide reduces the scattering produced by the bulk ionized impurities, enhancing Coulomb-limited mobility in deep-submicron devices. On the other hand, we have seen (by using MINIMOS-NT) that the use of the low doped silicon layer significantly improves the drain current while degrade the turn-off behavior of very short-channel devices only moderately. This design provides the possibility of taking full advantage of the great reduction in phonon scattering produced by the strain in the Si layer in these MOSFETs  相似文献   

7.
We measured the saturated current in both normal (doping layer on top) and inverted (doping layer on bottom) structures of modulation-doped In0.53Ga0.47As/InP. In the inverted structure, we find a saturated current consistent with the low-field carrier density and the bulk electron saturated velocity; but for the normal structure the saturated current is significantly lower than expected. Measurements indicate that this low saturation current is due to a loss of carriers at high fields.  相似文献   

8.
From the kinetic equations, the distribution functions for majority and minority charge carriers are obtained at a low injection level. For describing the electron-hole collisions, the Landau collision integral is used. The carrier scattering at ionized or neutral impurity and at acoustic phonons is taken into account. The majority-carrier distribution function is presented in the analytical form. The minority-carrier mobility is calculated and analyzed, and the features of its behavior at low temperatures are revealed. It follows from the developed theory that the hole mobility in an n-type material increases with doping and neutral-impurity concentration. This effect is attributed to mutual charge-carrier collisions and different effective masses of different-sign carriers.  相似文献   

9.
A modeling approach is described that extracts the functional dependence of carrier mobility on local transverse and longitudinal fields, channel doping, fixed interface charge, and temperature in MOS inversion and accumulation layers directly from the experimentally measured effective (or average) mobility. This approach does not require a priori detailed knowledge of the experimental variation of mobility within the inversion or accumulation layer, and it can be used to evaluate the validity of other models described in the literature. Also, an improved transverse-field dependent mobility model is presented for electrons in MOS inversion layers that was developed using this new modeling approach. This model has been implemented in the PISCES 2-D device simulation program. Comparisons of the calculated versus measured data show excellent agreement for ID-VG and ID-VD curves for devices with Leff=0.5 to 1.2 μm  相似文献   

10.
Molecular beam epitaxy n-type long-wavelength infrared (LWIR) Hg1?x Cd x Te (MCT) has been investigated using variable-field Hall measurement in the temperature range from 50 K to 293 K. A quantitative mobility spectrum analysis technique has been used to determine the role of multicarrier transport properties with respect to epilayer growth on lattice-matched cadmium zinc telluride, as well as lattice-mismatched silicon (Si) and gallium arsenide (GaAs) buffered substrates. Overall, after postgrowth annealing, all layers were found to possess three distinct electron species, which were postulated to originate from the bulk, transitional (or higher-x-value) regions, and an interfacial/surface layer carrier. Further, the mobility and concentration with respect to temperature were analyzed for all carriers, showing the expected mobility temperature dependence and intrinsic behavior of the bulk electron. Electrons from transitional regions were seen to match expected values based on the carrier concentration of the resolved peak. At high temperature, the lowest-mobility carrier was consistent with the properties of a surface carrier, while below 125 K it was postulated that interfacial-region electrons may influence peak values. After corrections for x-value and doping density at 77 K, bulk electron mobility in excess of 105 cm2 V?1 s?1 was observed in all epilayers, in line with expected values for lightly doped n-type LWIR material. Results indicate that fundamental conduction properties of electrons in MCT layers are unchanged by choice of substrate.  相似文献   

11.
This paper reports the studies of the inversion layer mobility in n- and p-channel Si MOSFET's with a wide range of substrate impurity concentrations (1015 to 1018 cm-3). The validity and limitations of the universal relationship between the inversion layer mobility and the effective normal field (Eeff) are examined. It is found that the universality of both the electron and hole mobilities does hold up to 1018 cm -3. The Eeff dependences of the universal curves are observed to differ between electrons and holes, particularly at lower temperatures. This result means a different influence of surface roughness scattering on the electron and hole transports. On substrates with higher impurity concentrations, the electron and hole mobilities significantly deviate from the universal curves at lower surface carrier concentrations because of Coulomb scattering by the substrate impurity. Also, the deviation caused by the charged centers at the Si/SiO2 interface is observed in the mobility of MOSFET's degraded by Fowler-Nordheim electron injection  相似文献   

12.
Solid boron and antimony doping of silicon and SiGe grown by molecular beam epitaxy using disilane and germane as sources has been studied. Elemental boron is a well behaved p-type dopant. At effusion cell temperatures of 1700–1750°C, hole carrier concentrations in the 1020 cm−3 range have been obtained. Elemental antimony doping shows surface segregation problems. For uniformly doped layers, the as-grown materials do not show n-type conductivity. Electron concentrations in the 1017 cm−3 range were obtained by post-growth conventional and rapid thermal annealing at 900 and 1000°C, respectively. The electron Hall mobility improves with optimum annealing time. Delta doping of buried layers exhibits slightly better incorporation behavior including significant surface riding effects.  相似文献   

13.
The electromagnetic wave propagation of millimeter waves in dielectric waveguides with thin surface plasma layers is characterized. The phase and attenuation of a 94-GHz wave are computed for various surface plasma layer thicknesses as a function of earner density levels. The electron/hole pairs generated in the vicinity of the dielectric waveguide surface by photo excitation are assumed to have an exponential profile due to either carrier diffusion or the exponential absorption of the optical field. Field computations made for a uniform plasma layer are compared with those of the nonuniform plasma to illustrate the effects of the exponential tails of the carrier profiles on both the phase and attenuation of the millimeter wave. The thin plasma layers slightly affect the field profile of the transverse electric modes (fields polarized parallel to the plasma layer). The transverse magnetic fields are highly distorted at plasma densities greater than 10/sup 16/ cm/sup -3/.  相似文献   

14.
In this paper, we experimentally address the effect of a wide range of parameters on the high-field transport of inversion-layer electrons and holes. The studied parameters include substrate doping level, surface micro-roughness, vertical field strength, nitridation of the gate oxide, and device channel length. We employ special test structures built on Silicon-On-Insulator (SOI) and bulk wafers to accurately measure the high-field drift velocity of inversion-layer carriers. Our findings point to electron velocity overshoot at room temperature, dependence of electron and hole saturation velocities on nitridation of the gate oxide, dependence of the high-field drift velocity on the effective vertical field, and relative insensitivity of electron and hole mobility and saturation velocity to moderate surface roughness  相似文献   

15.
The transport of warm and hot carriers in quantized inversion layers has recently become of considerable interest, due in part to the quasi-two-dimensional nature of the carrier system and to the multitude of subbands present. Generally, the number of carriers in the inversion layer is sufficiently large that carrier-carrier scattering maintains a quasi-Maxwellian for the isotropic part of the distribution function, but the inter-subband interactions are sufficiently weak that each subband possesses a separate electron temperature. The treatment of carrier transport can be naturally separated into two regimes. In the first, the carriers are hot. In this regime, the transport can be found from energy and momentum balance equations and the transport differs little from a classical three-dimensional model, except in the field region in which inter-subband transfer of carriers is important. In this field range, subtle changes in the velocity-field curve are observed and significant effects are found in the microwave conductivity at frequencies on the order of the inter-subband repopulation rate. In the warm electron regime, however, for low and moderate electric fields, the degenerate nature of the carrier distribution function must be considered. Although the electron temperature concept remains valid in this regime, the agreement between theory and experiment is not good and the lack of this agreement makes it difficult to assess the physical processes occurring. The situation is complicated at low temperatures where many of the scattering mechanisms are not fully understood and the carrier densities and transport can show activation behavior. This lack of understanding is especially true in warm carrier magneto-transport. For this reason, care must be exercised in evaluating the role played by the electric field. In this paper, these various regimes are discussed and compared to the available experimental data.  相似文献   

16.
A quantum mechanical model of electron mobility for scaled NMOS transistors with ultra-thin SiO2/HfO2 dielectrics (effective oxide thickness is less than 1 nm) and metal gate electrode is presented in this paper. The inversion layer carrier density is calculated quantum mechanically due to the consideration of high transverse electric field created in the transistor channel. The mobility model includes: (1) Coulomb scattering effect arising from the scattering centers at the semiconductor–dielectric interface, fixed charges in the high-K film and bulk impurities, and (2) surface roughness effect associated with the semiconductor–dielectric interface. The model predicts the electron mobility in MOS transistors will increase with continuous dielectric layer scaling and a fixed volume trap density assumption in high-K film. The Coulomb scattering mobility dependence on the interface trap density, fixed charges in the high-K film, interfacial oxide layer thickness and high-K film thickness is demonstrated in the paper.  相似文献   

17.
The thermoelectric properties of n-type Hg0.79Cd0.21Te (MCT) and of MCT layers with n-p structure have been investigated in transverse (B ⊥ ∇T) and longitudinal (B ‖∇T) magnetic fields (0 ≤ B ≤ 16 kG) using the lateral gradient method at temperatures between 10 and 300K. The experimental results were analyzed by considering the contributions of electrons and holes to the magneto-thermoelectric effect and the scattering mechanisms involved. The analysis is based on a nonparabolic conduction band and Landau quantization as well as empirical relations for the band gap, the intrinsic carrier density, and the magnetoresistance. For n-type MCT at low temperatures (10 < T < 30K) and weak magnetic fields (B < 2 kG), the transverse magneto-thermoelectric effect (TME) was seen to be dominated by electron scattering on ionized defects. Longitudinal acoustic phonon drag was found to affect the TME in strong magnetic fields (B > 3 kG) at low temperatures (T < 20K). Longitudinal (LO) phonons were shown to prevail in the electron scattering at higher temperatures (T > 50K) in weak magnetic fields. With increasing magnetic fields, the effect of LO-phonon scattering decreases, and eventually the TME becomes independent of electron scattering. The longitudinal magneto-thermoelectric effect of n-type MCT was also found to exhibit magnetophonon oscillations due to LO-phonon scattering from both HgTe and CdTe phonons. The transverse magnetoresistance (TMR) of the n-type layers in the quantum region has been found to be linearly dependent on the magnetic field. Owing to the TMR of the n-type layers, the variation of the TME of p-n multiple layers with magnetic field is much larger than the variation of the Seebeck coefficient with temperature. Thus, the sensitivity to p-type layers is considerably enhanced compared to that of the Seebeck coefficient. As a result, the TME has proved to be particularly useful in determining the doping and composition of the constituent layers of MCT n-p structures.  相似文献   

18.
A comprehensive characterization of buried-channel NMOS transistors at low temperatures down to 30 K is reported. The mobilities of both surface (accumulation) and bulk (buried-channel) electrons were determined as a function of surface electric field and gate bias voltage, respectively, at low temperatures. Both surface electron mobility and buried-channel electron mobility increase with decreasing temperatures. However, a peak in the buried-channel electron mobility is observed around 80 K if the neutral region extends to regions of high impurity concentrations near the surface. A modified MOSCAP (Poisson solver) was used to obtain spatial distributions of carriers and to predict the C-V curves. Low-frequency noise measurements at low temperatures were carried out at gate voltages corresponding to the accumulation, depletion, and inversion modes of operation of the device. In the accumulation mode, a 1/f dependence is observed similar to surface-channel devices. In the depletion mode, a generation-recombination type of noise is observed with a peak around 150 K. In the inversion mode, noise that is related to the hole inversion layer is observed  相似文献   

19.
This paper traces the research and development steps that led to selectively doped heterostructure transistors and integrated circuits. The transistor is the fastest switching transistor known, whereas integrated circuits built with the device outperform all other circuits of equivalent function. The work began with studies of GaAs optical spectroscopy at low temperatures using (Al, Ga)As-GaAs-(Al, Ga)As heterostructures to obtain micrometer-thick GaAs layers for absorption measurements. To prepare thinner layers, a multilayer (Al, Ga)As/GaAs structure containing 10 or 20 GaAs layers interleaved with (Al, Ga)As support layers were grown. With ∼200-Å-thick GaAs layers, the absorption spectrum at 2 K showed quantization of electron motion. Doping experiments resulted in the concept of doping the wider band-gap (Al, Ga)As to supply carriers to the undoped narrower bandgap GaAs. The removal of impurities from the GaAs layer results in higher carrier mobility due to greatly reduced impurity scattering. This technique, called modulation doping, resulted in a new generation of higher speed devices and circuits. The basic device is known as a selectively doped heterostructure transistor or SDHT.  相似文献   

20.
Extensive measurements of electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces were performed using the field effect conductance technique. It was found that both electron and hole mobilities are practically constant and approximately equal to one half of their respective bulk values up to a surface field of about 1.5 × 105volts/cm, corresponding to about 1012electronic charges/cm2induced in the silicon. At higher fields the inversion layer mobilities begin to decrease slightly. The temperature dependence of inversion layer mobilities follows a T-1.5rule at the upper range of the interval -196 to 200°C, indicating a scattering mechanism similar to lattice scattering. This observation is further supported by the lack of a significant effect of an order-of-magnitude variation in the bulk impurity concentration (1015- 1016cm3) on the inversion layer mobilities. No significant effect of structural and geometrical parameters (such as channel length and shape, oxide type and thickness, and surface charge density) was found on the inversion layer mobilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号