首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
对于小型光伏并网发电系统,文中详细分析交错两级式并网系统。直流侧为双重的BOOST升压电路实现最大功率控制,采用扰动观察法实现最大功率点跟踪,并网逆变器的控制策略电压外环电流内环的双环控制,其中电流内环为滞环控制方式,并网逆变器的输出电流跟踪电网电压,实现功率因数为1的并网方式。文中给出了基于MATLAB的系统仿真模型,结果表明光伏电池能较好地实现最大功率点跟踪,电感容量减小,并且逆变后成功并网。  相似文献   

2.
光伏并网发电系统是光伏系统发展的趋势,文章根据光伏并网发电系统的特点,设计了一套基于数字信号处理器TNS320F2407控制的单相光伏并网逆变器。分析了系统的结构和控制原理,设计了最大功率点跟踪算法和锁相环的软件设计流程图。实验结果表明并网电流波形良好,逆变器输出的电流基本与电网电压同频同相,并网的功率因数近似为1。  相似文献   

3.
光伏并网发电系统是光伏发电系统发展的趋势。文中介绍了单极式光伏系统的拓扑结构和实现最大功率的工作原理,阐述了电导增量法实现MPPT的基本思想。根据光伏系统并网发电拓扑结构,设计了一套新型的实现最大功率跟踪的单极式光伏并网逆变器。逆变器控制部分由DSP实现最大功率跟踪和输出电流跟踪控制,实现了逆变输出电流与电网同步,且高功率因数运行。仿真结果表明,单极式光伏并网逆变系统能准确跟踪太阳能电池最大功率点,并具有较好的稳定性。  相似文献   

4.
《现代电子技术》2015,(12):159-162
为了真实地模拟光伏发电并网系统,针对光伏发电并网的最大功率点追踪,给出了基于电导增量法的控制方法,提高了光伏电池阵列的工作效率。利用Boost电路实现MPPT控制,以SVPWM变换形成PWM波,在此基础上分别从光伏发电并网系统的各重要组成部分出发,建立了一套两级式三相光伏并网发电系统模型。最后,通过仿真对所搭建模型的动态性能进行验证。仿真结果表明,该模型能够真实地反映三相光伏发电并网系统的实际运行特性,具有较好的动态性能。  相似文献   

5.
分析了一种单相光伏并网发电仿真系统.根据光伏电池的数学模型建立了光伏阵列的仿真模型,采用变步长扰动观察法实现最大功率点跟踪控制,引入电网电压前馈的双闭环控制策略实现并网控制.基于Matlab仿真平台,搭建了系统仿真模型,仿真结果表明光伏电池输出功率能很好的保持在最大功率点,直流母线电压保持稳定,逆变器输出电流与电网电压同频同相,真正实现了并网,提高了电能质量.  相似文献   

6.
随着新能源发电的迅速发展,越来越多的可再生能源被转化为电能并通过并网逆变器输送到电网。利用MATLAB仿真工具箱建立了由光伏阵列输出、Boost升压电路、逆变器、控制器、电网等组成的5 kW光伏并网发电系统的仿真模型,研究了光伏并网系统的特性。采用变结构模糊PID控制器实现5 kW光伏发电系统的MPPT;采样电网电压作为逆变器电流的参考信号,利用滞环比较法控制逆变器,实现系统输出电流与电网电压同频同相,功率因素近似为1。仿真结果表明,系统较好地实现了光伏发电系统的MPPT及安全并网,对实际光伏并网系统的设计有参考意义。  相似文献   

7.
500W光伏并网逆变器设计   总被引:8,自引:0,他引:8  
光伏并网发电系统是光伏系统发展的趋势.根据光伏并网发电系统的特点,设计了一套额定功率为500W的光伏并网逆变器,该并网逆变器能实现最大功率跟踪和反孤岛效应控制功能,控制部分采用基于TMS320F240型DSP的电流跟踪控制策略,实现了与网压同步的正弦电流输出.  相似文献   

8.
方波  王晔 《现代电子技术》2010,33(12):185-187,190
采用DC/DC和DC/AC两级拓扑结构对光伏并网系统进行了研究和设计,采用改进的定电压跟踪法(CVT)实现最大功率点闭环跟踪,并将PWM控制器引入并网逆变中,采用三角波比较方式实现SPWM电压逆变和输出电流的波形跟踪与控制,在电压、电流内环的基础上引入功率外环以实现系统前后级功率平衡和能量管理,采用基于PSpice的光伏电池仿真模型对所设计光伏并网系统进行了仿真。仿真结果表明,基于PSpice的光伏仿真模型能够有效地模拟实际光伏并网系统的行为特征,将PSpice软件用于光伏发电系统的仿真是可行的。  相似文献   

9.
Z源型光伏并网逆变器研究   总被引:1,自引:0,他引:1  
潘建  惠晶  马兆彪  赵冉 《现代电子技术》2008,31(12):183-186
介绍并分析Z源型光伏并网逆变器的拓扑结构及其工作原理。基于并网逆变器Z源阻抗网络的特殊性质,为改善输出波形质量,减少并网电流谐波,系统省略传统逆变桥臂的死区设定,通过控制逆变桥臂的直通矢量占空比实现光伏阵列输出电压的升压功能。利用Matlab对逆变器控制系统运行控制模式进行仿真,仿真结果证明理论分析的正确性和有效性。  相似文献   

10.
没有与电网隔离的光伏并网逆变系统存在共模干扰。本文以两级式光伏并网逆变系统为例进行了共模干扰分析。首先针对两级式光伏并网系统的拓扑,依据共模干扰产生机理详细分析了该系统共模电流路径并给出了共模模型。其次,根据共模模型及抑制策略进行了仿真验证。仿真结果表明所建模型正确且抑制方法有效。  相似文献   

11.
光伏并网的控制策略与最大功率点跟踪的仿真分析   总被引:1,自引:0,他引:1  
太阳能是一种丰富干净的可再生性能源,研究可靠的光伏并网发电系统控制策略和光伏电池输出特性与最大功率跟踪是非常重要。该文分析了光伏电池的工程数学模型,根据光伏电源输出特性与交流电源之间功率流动特征,提出了并网控制方案采用电压电流双闭环控制结构方法相结合的单级式光伏并网系统,使光伏电源并网逆变器输出电流完全与电网电压相位一致。此外,针对最大功率跟踪算法的实现和并网控制策略的配合问题进行了稳定性分析,最后通过仿真与实验验证了理论分析的正确性及控制策略的可行性。  相似文献   

12.
介绍了双级式单相光伏并网系统,分析了其拓扑结构。升压采用模糊推理进行最大功率点跟踪控制;双闭环控制实现了对电网电压的同频同相控制,达到了并网要求。通过MatlabR2010对系统进行了仿真,仿真结果表明逆变输出电流和电网电压同频同相,并有效地跟踪了光伏阵列的最大功率点。  相似文献   

13.
姜晟  孙道宗 《电子设计工程》2011,19(22):11-13,17
光伏并网发电已成为目前发展最快、应用面最广的光伏能源应用技术。在光伏系统中,由于电池光电转换效率过低,导致其不能以最大功率输出,最大功率点跟踪(MPTT)是光伏并网发电系统中的核心技术。系统采用单片机ATmega128作为核心芯片输出SPWM信号,实现最大功率点跟踪功能、频率相位跟踪功能、输入欠压保护功能以及输出过流保...  相似文献   

14.
提出了一种单相光伏并网系统控制策略,通DC/DC电路对变流器母线稳压,在并网端变流器中采用瞬时电流控制和以输出电流最大为目标的扰动观测改进算法。该控制策略避免了传统变流器电压外环调节速度慢的不足,同时对于最大功率点跟踪不依赖光伏电池输出特性检测。本策略具有MPPT跟踪速率快,成本低,并网电流畸变小等特点,通过实验结果验证了该方案的可行性和正确性。  相似文献   

15.
为了提高光伏发电效率和电能质量,对光伏并网逆变器进行了相关研究,针对光伏最大功率点跟踪问题,对传统的电导增量法进行融合和改进.提出一种改进的电导增量控制算法。该控制算法能够快速精准地跟踪最大功率点;有效改善系统在最大功率点附近的震荡现象;提高了光伏电池的发电效率。在逆变控制方面,采用电压外环、电流内环的双PI环控制,电压外环实现中间直流母线电压的稳定控制。电流内环用于控制输出电流的稳定,两者通过中间直流母线耦合,匹配简单,系统控制具有较好的快速性和稳定性;减少了谐波含量,输出电流具有良好的正弦度,且与电网电压同频同相.因而提高了电能质量。最后用matlab对光伏并网逆变器进行建模仿真,实验结果表明该系统工作稳定.性能良好。达到了预定的设计效果。  相似文献   

16.
本文设计了一种光伏并网发电模拟系统,研究符合国家电网标准的输出电流,减少并网发电系统中的高次谐波分量。本系统以STM32F103ZET6为主控器,采用降压变压器及电压比较器提取电网中高压交流电的零相位时刻作为参考相位,对发电模拟系统的输出与参考相位之间存在的相位差进行比例调节,提高系统跟踪相位的速度和系统的稳定性。测试结果表明,本文设计的光伏并网发电模拟系统可输出50Hz且频率偏差小于0.1Hz的正弦波,符合国家电网要求,验证了方案的可行性与有效性。  相似文献   

17.
针对光伏并网逆变器并网后其本质上为电流源的特点,采用STM32F103VET6型ARM芯片作为系统的控制核心,制造了一台5 kW单相光伏并网型逆变器。采用了固定开关频率的电流瞬时值控制技术来实现对并网电流的控制,在控制策略中加入了电压前馈来抑制电网电压对逆变器输出电流的影响,使用二阶电流预估来抵消SPWM波形延时对系统控制的影响。并且优化了最大功率点跟踪(MPPT)。实验证明,该逆变器样机性能完全达到设计要求。  相似文献   

18.
文中提出了一种基于有源滤波与光伏发电的并网逆变器的控制方法,在并联型有源电力滤波器的基础上拓展了新能源发电功能,采用电压电流双环对并网逆变直流侧电压和系统电网输出有功电流进行控制。该并网逆变器既可以滤除负载的谐波和补偿负载的无功功率,也可以实现有功功率的有效传输,适于未来微电网中并网逆变器的应用研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号