首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
(Al)GaInP材料的MOCVD生长研究   总被引:1,自引:0,他引:1  
对可见光半导体光电子材料Ga0.5In0.5P、(AlXGa1-x)0.5In0.5P的MOCVD生长进行了研究。使用X射线双晶衍射和PL谱测量结合的手段,研究了生长速度和生长温度对材料质量的影响。根据测试结果优化了(Al)GaInP材料的生长速度和生长温度。为研制出高性能的650nm半导体激光器打下良好的材料基础。  相似文献   

2.
本文研究了利用金属有机物化学汽相淀积系统(MOCVD)生长高质量不同Al组分AlxGa1-xN薄膜(0.13〈x〈0.8)。扫面电子显微镜(SEM)照片表明生长的AlN插入层有效地调节了AlGaN层与GaN支撑层的应力,使AlGaN表面平整无裂纹,原子力显微镜(AFM)测量得到所有AlGaN薄膜粗糙度均小于1nm。通过原位干涉谱发现,AlGaN薄膜生长速率主要由Ga流量大小控制,随Al组分升高逐渐降低。利用X射线衍射和卢瑟福背散射(RBS)两种方法确定AlGaN薄膜的Al组分,发现Al组分与摩尔比TMAl/(TMGa+TMAl)关系为线性,说明在优化的生长条件下,Al原子与NH3的寄生反应得到了有效的抑制。  相似文献   

3.
本文研究了利用金属有机物化学汽相淀积系统(MOCVD)生长高质量不同Al组分AlxGa1-xN薄膜(0.13相似文献   

4.
本文研究了利用金属有机物化学汽相淀积系统(MOCVD)生长高质量不同Al组分AlxGa1-xN薄膜(0.13<x<0.8).扫面电子显微镜(SEM)照片表明生长的AlN插入层有效地调节了AlGaN层与GaN支撑层的应力,使AlGaN表面平整无裂纹,原子力显微镜(AFM)测量得到所有AlGaN薄膜粗糙度均小于1 nm.通过原位干涉谱发现,AlGaN薄膜生长速率主要由Ga流量大小控制,随Al组分升高逐渐降低.利用X射线衍射和卢瑟福背散射(RBS)两种方法确定AlGaN薄膜的Al组分,发现Al组分与摩尔比TMAl/(TMGa+TMAl)关系为线性,说明在优化的生长条件下,Al原子与NH3的寄生反应得到了有效的抑制.  相似文献   

5.
LP—MOCVD生长InGaN单晶薄膜   总被引:1,自引:0,他引:1  
  相似文献   

6.
使用氮化物MOCVD外延生长系统,采用传统的两步生长法在76.2 mm c面蓝宝石衬底上生长了不同压力的GaN薄膜样品.研究发现提高高温GaN的生长压力,初期的三维生长时间增长,有利于提高GaN薄膜的晶体质量.同时采用XRD、PL谱和湿化学腐蚀方法研究了样品的位错特性,结果表明高压生长的样品能够降低位错密度,起到改善G...  相似文献   

7.
文章主要研究利用金属有机物化学汽相沉积(MOCVD)方法制备的Mg掺杂AlGaN薄膜。根据Raman光谱对Mg掺杂AlGaN薄膜应力和X射线摇摆曲线对晶体质量的研究表明引入高温AlN插入层能有效调节应力,并提高薄膜质量,降低位错密度。实验发现在保持Mg掺杂量不变的情况下,随着Al组分的上升,材料中出现大量岛状晶核,粗糙度变大,晶体质量下降,由三维生长向二维生长的转变更加困难。同时研究发现Al组分的上升和Mg掺杂量的增加都会使得螺位错密度上升;Mg的掺杂对于刃位错有显著影响,而Al组分的上升对刃位错无明显影响。经过退火温度对空穴浓度影响的研究,发现对于P型Al0.1Ga0.9N样品,900℃为比较理想的退火温度。  相似文献   

8.
为了解决材料的界面平整度,改善材料的晶体质量,在Ⅲ-Ⅴ族氮化物(InGaN)材料的生长过程中,加入了Al掺杂剂.实验发现,InGaN材料的双晶衍射半宽从533arcsec(非掺Al)下降到399 arcsec(轻掺Al),PL光谱半宽变窄,从21.4 nm(非掺Al)降为20.9 nm(轻掺Al).研究结果表明,Al作为活性剂明显提高了InGaN材料质量,这将对改善LED和LD多量子阱材料和器件质量带来积极影响,目前还没有相关的文献报道.  相似文献   

9.
重掺碳GaAs层的MOCVD生长及特性研究   总被引:1,自引:1,他引:0  
采用 CCl4 作为碳掺杂源 ,进行了重掺碳 Ga As层的 L P- MOCVD生长 ,并且对掺杂特性进行了研究 ,研究了各生长参数对掺杂的影响。CCl4 流量是决定掺杂浓度的主要因素。减小生长温度、减小 / 比、降低生长压力 ,都能较大的提高掺杂浓度。通过改变 CCl4 流量 ,在生长温度为5 5 0~ 6 5 0℃、 / 比为 15~ 4 0 ,生长压力在 1× 10 4 ~ 4× 10 4 Pa的范围内 ,均能得到高于 2× 10 19/cm3 的掺碳 Ga As外延层 ,最高掺杂浓度为 8× 10 19/ cm3  相似文献   

10.
MOCVD生长高Al组分AlGaN材料研究   总被引:1,自引:0,他引:1  
报道了用MOCVD在蓝宝石衬底上生长日盲型AlGaN基紫外探测器用的高质量AlN、AlGaN材料。通过优化AlN、AlGaN生长的工艺条件,如生长温度、生长压力及Ⅴ/Ⅲ比等,得到了器件级高质量的AlN、AlGaN外延材料。AlN外延膜X射线双晶衍射ω(002)面扫描曲线半高宽为97",ω(102)面扫描曲线半高宽为870",Al0.6Ga0.4N外延膜双晶衍射ω(002)面扫描曲线半高宽为240";使用原子力显微镜(AFM)对两种样品5μm×5μm区域的表面平整度进行了表征,AlN外延膜的粗糙度(Rms)为8.484nm,Al0.6Ga0.4N外延膜的粗糙度为1.104nm;透射光谱测试显示AlN和Al0.6Ga0.4N吸收带边分别为205nm和266nm,且都非常陡峭。  相似文献   

11.
报道了以Al2O3为衬底在GaN薄膜上LP-MOCVD外延生长InGaN单晶薄膜,并研究了InGaN的生长特性。实验给出了InxG1-xN合金的固相组分与汽相组分和生长温度的变化关系,并应用X射线衍射(XRD)、X射线回摆曲线(XRC)和室温光致荧光(PL)谱等技术对外延层的晶体质量、完整性和发光特性进行了分析。发现InGaN/GaN系统中保持适当的压应力有助于提高外延层的晶体完整性,减少非故意掺杂杂质的引入,能改善外延层的发光特性。  相似文献   

12.
使用MOCVD技术生长了 980nmVCSEL ,在GaAs/AlGaAsDBR对的生长过程中通过相干反射率测量方法实现了在位监测和实时校正生长。白光反射谱测量结果表明通过上述手段准确控制了外延层的光学厚度。外延生长结束后 ,制备了 980nmVCSEL ,器件在室温下连续工作 ,输出功率为 7.1mW ,激射波长为 974nm ,斜率效率为 0 .4 6 2mW/mA。  相似文献   

13.
生长了短周期 Al Ga As/ Ga As超晶格 ,并通过双晶 X射线衍射谱 ,对 MOCVD超薄层Al Ga As、Ga As的生长进行了研究。从衍射谱卫星峰的级数及 Pendellosong干涉条纹的出现 ,定性地对晶格结构及界面作出评价。 X光衍射测量结果与 HEMT结构电学性能测试结果有较好的对应关系。  相似文献   

14.
文章主要研究利用金属有机物化学汽相沉积(MOCVD)方法制备的Mg掺杂AlGaN薄膜。根据Raman光谱对Mg掺杂AlGaN薄膜应力和X射线摇摆曲线对晶体质量的研究表明引入高温AlN插入层能有效调节应力,并提高薄膜质量,降低位错密度。实验发现在保持Mg掺杂量不变的情况下,随着Al组分的上升,材料中出现大量岛状晶核,粗糙度变大,晶体质量下降,由三维生长向二维生长的转变更加困难。同时研究发现Al组分的上升和Mg掺杂量的增加都会使得螺位错密度上升;Mg的掺杂对于刃位错有显著影响,而Al组分的上升对刃位错无明显影响。经过退火温度对空穴浓度影响的研究,发现对于P型Al0.1Ga0.9N样品,900℃为比较理想的退火温度。  相似文献   

15.
详细分析了MOCVD AIGalnPLED外延片中V族源的空流保护作用、Ⅲ族源的存储效应以及Mg掺杂的延迟和记忆效应。设计出了合理实用的源气开关程序,它有利于生长宽带隙夹层、突变异质结果面的AIGalnPLED外延片。  相似文献   

16.
给出了MOCVD反应室流体力学的模拟方法,介绍一个MOCVD反应室设计软件。该软件通过模拟反应室内的气流分布、压力分布和温度分布情况,可用来检验现有反应室结构的合理性及设计新型反应室结构。作为分析实例,对入口区扩散气流对整个反应室气流分布的影响作了简单讨论。  相似文献   

17.
分析了MOCVDAlGaAs/GaAsHBT外延材料生长中基区、发射区异质结界面与P N结界面产生偏离的原因 ,计算了外延生长参数对结偏离的影响 ,得到了对于C、Mg及Zn作为P型掺杂剂时 ,使得结偏位为 0时所需生长的GaAsspace层厚度 ,它们分别为 1~ 1.5nm、3~ 4nm及 12~ 15nm。计算与器件研制结果基本相符。  相似文献   

18.
介绍了当前国际上流行的用半导体可饱和吸收镜来对固体激光器、光纤激光器和半导体激光器进行被动锁模的方法,阐述了半导体可饱和吸收镜用来作为被动锁模吸收体的原理,并介绍了如何利用金属有机气相淀积(MOCVD)技术生长各种波长激光器所需要的半导体可饱和吸收镜。  相似文献   

19.
本文研究了GaInAs/SiO_2与GaInAs/Al_2O_3的界面性质.采用PECVD技术以TEOS为源以及采用MOCVD技术以Al(OC_3H_1)_3为源在n~+-InP衬底的n-Ga_(0.47) In_(0.33)As外延层上淀积了/SiO_2和Al_2O_3,制备成MIS结构.结果表明这些MIS结构具有良好的C-V特性,SiO_2/GaInAs界面在密度最低达 2.4×10~(11)cm~2·eV~(?),氧化物陷阱电荷密度达10~(?)~10~(10)cm~2,观察到GaInAs/SiO,结构中的深能级位置为E_c-E_T=0.39eV.GaInAs/Al_2O_3结构中的深能级位置为E_c=E_T=0.41eV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号