首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷的介电性能与微观结构   总被引:3,自引:2,他引:3  
利用传统陶瓷工艺制备了新型的Bi0.5(Na1-x-yKxLiy)0.5TiO3无铅压电陶瓷,研究了陶瓷的介电性能和微观结构。研究结果表明,介电常数εr和介质损耗tgδ在K含量为0.20~0.25(摩尔分数)时达到最大值,且随Li含量的增加而增大;介温曲线表明,Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷在110~210℃之间出现介质损耗峰,在300~350℃附近出现比较平坦的介电常数峰;陶瓷的最佳烧结条件为1 100~1 150℃,2~3 h;陶瓷晶粒有规则的几何外形,晶粒尺寸为1.2~2.5 m;Li含量越高,陶瓷的烧结温度越低;K促进了晶粒特定方向的生长。  相似文献   

2.
Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系无铅压电陶瓷的介电压电性能   总被引:2,自引:0,他引:2  
研究了(Na1-xKx)0.5Bi0.5TiO3体系无铅压电陶瓷的介电、压电性能,通过XRD分析,发现随着x的增加,陶瓷的晶体结构由三方相逐渐转变为四方相,x=0.16~0.20范围内具有三方和四方共存相结构,为该体系的准同型相界(MPB),材料在MPB附近具有最佳的压电性能.测试了陶瓷的介电温谱,表明该体系陶瓷为弛豫型铁电体,电滞回线表明陶瓷在升温过程中发生铁电-反铁电-顺电相变.  相似文献   

3.
采用直接反应烧结法制备掺铟的(Bi0.5Na0.5)0.93Ba0.07TiO3无铅压电陶瓷,研究了铟掺杂对(Bi0.5Na0.5)1-xBaxTiO3(BNBT)压电陶瓷压电性能、相组成及显微组织的影响。结果表明,添加适量的氧化铟后,该陶瓷仍为纯钙钛矿相结构,其材料组成在准同型相界处三方相减少,四方相增加;适量铟掺杂可抑制晶粒长大,有利于晶粒均匀生长,增大晶粒各向异性。当掺杂氧化铟的质量分数为0.16%时,获得了高的压电参数,其压电常数d33达到205 pC/N,厚度机电耦合系数kt、厚度与径向耦合系数之比kt/kp分别达到0.5、2.77。  相似文献   

4.
(Na0.5Bi0.5)TiO3陶瓷A位二价金属离子取代的研究   总被引:12,自引:3,他引:9  
主要研究了用Ba^2+、Sr^2+、Ca^2+对钙钛矿结构(ABO3)的无铅压电陶瓷(Na0.5Bi0.5)TiO3(NBT)的A位进行部分取代后材料的介电、压电性能。实验表明,A位Ba^2+取代使NBT的介电系数有明显的增大,而Sr^2+、Ca^2+对NBT的介电系数影响不大。而3种离子A位的取代,都使NBT的高矫顽电场有了大幅度的降低,其中以Ba^2+的效果最为明显(2.5~2.0kV/mm)  相似文献   

5.
采用传统固相法制备了新型(1-x)Bi0.5(Na0.8K0.2)0.5TiO3-x(Bi1-yLay)FeO3无铅压电陶瓷,利用了XRD、SEM等测试技术表征了该陶瓷的晶体结构、表面形貌、介电和压电性能.研究结果表明,在所研究的组成范围内陶瓷材料均能形成纯的钙钛矿结构固溶体,陶瓷晶粒尺寸随x、y的增加而增加.压电性能随x的增加先增加后减少,随y的增加先减小后增大,在x=0.005,y=0.9时,压电常数及机电耦合系数达到最大值(d33=149 pC/N,kp=0.27).  相似文献   

6.
采用传统电子陶瓷工艺,制备了多重离子A位复合的、具有钙钛矿结构的新型压电陶瓷材料[(Na0.97-xkxLi0.03)0.5Bi0.5]TiO3(其中x为0.10,0.15,0.20和0.25),研究了该陶瓷的相结构与介电铁电性能。结果表明,随着K+含量的增加,材料的晶粒尺寸明显细化,εr也随之增加,tanδ先降低后增加,其弥散性指数均介于1.7~1.9。在x为0.25时,材料为两相共存结构,其εr峰值达到2353.22,tanδ仅为0.058,d33达到80pC/N,Ec为1.71×103V/mm,表现出优异的介电和压电性能。  相似文献   

7.
Bi0.5(Na1-xKx)0.5TiO3系陶瓷的压电性质与微观结构   总被引:6,自引:0,他引:6  
利用传统陶瓷工艺制备了Bi0.5(Na1-xKx)0.5TiO3系无铅压电陶瓷,研究了该陶瓷的压电性质与微结构。研究结果表明,Bi0.5(Na1-xKx)0.5TiO3陶瓷的压电常数d33=142.2 pC/N、机电耦合系数kp=0.315;随着K+含量的增加,陶瓷晶粒尺寸有细化的趋势;低K+含量时,陶瓷晶粒的“棱角”相当“钝化”,而高K+含量时,陶瓷晶粒的“棱角”明显而“尖锐”,K+促进了陶瓷晶粒在特定方向的生长;对Bi0.5(Na1-xKx)0.5TiO3陶瓷进行了A位离子改性研究,提出了新型的压电性质优良的BNT基无铅压电陶瓷体系。  相似文献   

8.
水热法制备纳米Na0.5Bi0.5TiO3粉体   总被引:5,自引:0,他引:5  
采用Bi(NO3)3?5H2O、Ti(OC4H9)4为原料,在水热条件下研究了影响Na0.5Bi0.5TiO3(BNT)晶体生长和形成的各个影响因素,诸如:水热反应的温度、时间,NaOH浓度以及原料的种类等。实验结果表明,反应温度在160~180℃,保温时间在4~24 h,NaOH浓度为4~12 mol/L时,能制备出纯净的、立方形的纳米Na0.5Bi0.5TiO3晶体,其颗粒线度尺寸为15~55 nm。若温度低于160℃,Na0.5Bi0.5TiO3结晶程度低;若高于180℃,易形成Bi4Ti3O12。当NaOH浓度低于4 mol/L时,Na0.5Bi0.5TiO3晶相少,主要呈Bi4Ti3O12;当其高于12 mol/L时,产物主要是非晶态物质。  相似文献   

9.
采用Pechini法成功制备出钛酸铋钠(Bi0.5Na0.5TiO3,简写为BNT)粉体,并利用此粉体烧结出致密的BNT陶瓷。Pechini法所制备的BNT陶瓷具有优良的压电性能,其压电常数d33高达105 pC/N,是目前文献所报道BNT陶瓷压电常数的最高值。室温时只需施加80 kV/cm的测量电压即可获得矩形度极好的饱和电滞回线,其剩余极化强度Pr与矫顽场Ec分别为37μC/cm2和61.2 kV/cm,且在60℃只需施加40 kV/cm的直流电场就可以使陶瓷充分极化。对不同Bi3 含量BNT陶瓷的研究表明,适当的Bi3 含量有利于获得结构致密、晶粒细小的微观结构与较高的铁电、压电性能。  相似文献   

10.
Bi0.5(Na1-x-yKxLiy)0.5TiO3压电陶瓷的制备、性能与微结构   总被引:6,自引:2,他引:4  
采用传统陶瓷工艺制备了新型无铅压电陶瓷Bi0.5(Na1-x-yKxLiy)0.5TiO3,研究了制备工艺的稳定性、放大效应、预烧粉体的研磨方式、成型工艺以及烧结方式对陶瓷压电性能的影响。研究结果表明,Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷的压电常数d33可达230 pC/N,其机电耦合系数kp可达0.40;采用传统陶瓷工艺能够制备单相钙钛矿结构的Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷,制备工艺的稳定性好,放大效应小,预烧粉体的研磨方式对性能的影响小,干压成型的样品压电性能最佳,烧结方式对性能无明显影响。显然,Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷具有压电性能优、工艺性好的特点,具有实用化价值。  相似文献   

11.
(1-3x)NBT-2xKBT-xBT系无铅压电陶瓷性能研究R&D   总被引:8,自引:2,他引:8  
通过XRD分析,发现该体系陶瓷都能形成单一的钙钛矿型固溶体,并在0.025≤x≤0.035范围内具有三方和四方共存结构,为该体系的准同型相界。当x=0.035时,陶瓷的压电常数d33达到150 pC/N,平面机电耦合系数kp达到0.297 7,均高于相应两元体系的压电性能。测定了该体系陶瓷材料的介电常数–温度曲线和电滞回线,发现该体系陶瓷的介电温谱都存在两个介电反常峰,分别对应于陶瓷材料的铁电–反铁电和反铁电–顺电相变。同时,该体系陶瓷具有弛豫铁电体性质。  相似文献   

12.
采用传统固相法制备了无铅压电陶瓷Bi0.5(NA0.825K0.175)0.5TiO3+x%Ag2O(BNKTA-x,质量分数x=0,0.1,0.3,0.5,0.7,1.0,1.5),利用XRD、SEM等测试技术分析表征了该体系陶瓷的结构、压电与介电性能.XRD分析表明,在1 175℃/2 h烧结条件下,当Ag的质量分数低于1.0%时,陶瓷呈单一相的钙钛矿结构.所有陶瓷晶粒大多成四方晶形,晶界明显,表面致密度高,Ag的引入促进了陶瓷晶粒的生长.另外,加入Ag后,陶瓷样品气孔率降低,当Ag的质量分数在0.3%附近时陶瓷的致密性最好.BNKTA-x体系陶瓷具有较好的电学性能:压电常数d33=147 pC/N,机电耦合系数kp=0.31,介电常数εr=1 059,介电损耗tanδ=0.029,机械品质因数Qm=247.  相似文献   

13.
利用传统陶瓷工艺制备了Bi1/2(Na1-xLix)1/2TiO3(简写BNLT100x,其中x为摩尔含量)系无铅压电陶瓷,研究了该陶瓷的微结构、压电和介电性能。X-射线衍射分析(XRD)结果表明,在x=0~0.20时,Bi1/2(Na1-xLix)1/2TiO3陶瓷为单相三方晶系钙钛矿结构;在x=0.30时,会有影响压电性能的第二相产生。扫描电镜(SEM)结果表明,Li含量越高,陶瓷的烧结温度越低,Li促进了晶粒特定方向的生长;在x=0.15时,压电系数d33达极大值109 pC/N;同时研究了极化工艺条件对材料压电性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号