首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached ?33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below ?10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.  相似文献   

2.
Development of (K,Na)NbO3-based ceramics has attracted much attention in recent decades. In this work, K0.5Na0.5Nb0.7Al0.3O3 ceramic was prepared using conventional solid-state processing. A deliquescence phenomenon was observed when the specimen was exposed to moist atmosphere. The reaction mechanism and cause of deliquescence were investigated using x-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, electron microprobe analysis, inductively coupled plasma mass spectrometry, and thermogravimetric/differential scanning calorimetric analysis. The results revealed interactions mainly amongst the raw materials K2CO3, Na2CO3, and Nb2O5 as well as K2CO3, Na2CO3, and Al2O3, which can influence the sintering behavior of the mixture. (K,Na)NbO3 and (K,Na)AlO2 were present in the sintered K0.5Na0.5Nb0.7Al0.3O3 ceramic, with the latter leading to deliquescence. During the sintering process, Al2O3 reacts with alkali oxides (Na2O and K2O), which are the decomposition products of carbonates, to form (K,Na)AlO2. In addition, Al2O3 is more likely to react with K2O compared with Na2O.  相似文献   

3.
A simple terahertz (THz) cavity and a TEA CO2 laser for the optically pumped THz emission is studied experimentally. To obtain high peak power of pump laser, pressure ratios of gas mixture in the cavity of the TEA CO2 laser are discussed. When CH3OH are pumped by the 9P(16) and 9P(36) CO2 laser lines, the generation of terahertz radiation with energy as high as 353 μJ and 307 μJ are obtained, respectively. The corresponding photon conversion efficiencies are 0.705% and 0.29%. Meanwhile, higher peak power of pump laser effectively improves the photon conversion efficiency. And the optimum THz laser pressure increases with narrower pulse width of pump laser.  相似文献   

4.
This paper describes a technique for dry etching SiO2 layers in MEMS technologies without the moving elements sticking. Etching the sacrificial SiO2 in anhydrous HF (hydrofluoric acid in the gas phase) allows avoiding the subsequent complex operations of cleaning and drying, which are mandatory in the case of liquid etching. Using the HF/C2H5OH anhydrous mixture under low pressures makes it possible to prevent water condensation, which is due to etching in HF vapor, and allows one to employ gas-phase etching in surface MEMS technologies. The mechanisms and physicochemical processes taking place when etching thermal SiO2 are discussed. The rate of etching thermal SiO2 films is investigated at temperatures ranging from 30 to 50°С and under chamber pressures ranging from 10 to 20 kPa.  相似文献   

5.
Hydrogen‐based energy is a promising renewable and clean resource. Thus, hydrogen selective microporous membranes with high performance and high stability are demanded. Novel NH2‐MIL‐53(Al) membranes are evaluated for hydrogen separation for this goal. Continuous NH2‐MIL‐53(Al) membranes have been prepared successfully on macroporous glass frit discs assisted with colloidal seeds. The gas sorption ability of NH2‐MIL‐53(Al) materials is studied by gas adsorption measurement. The isosteric heats of adsorption in a sequence of CO2 > N2 > CH4 ≈ H2 indicates different interactions between NH2‐MIL‐53(Al) framework and these gases. As‐prepared membranes are measured by single and binary gas permeation at different temperatures. The results of singe gas permeation show a decreasing permeance in an order of H2 > CH4 > N2 > CO2, suggesting that the diffusion and adsorption properties make significant contributions in the gas permeation through the membrane. In binary gas permeation, the NH2‐MIL‐53(Al) membrane shows high selectivity for H2 with separation factors of 20.7, 23.9 and 30.9 at room temperature (288 K) for H2 over CH4, N2 and CO2, respectively. In comparison to single gas permeation, a slightly higher separation factor is obtained due to the competitive adsorption effect between the gases in the porous MOF membrane. Additionally, the NH2‐MIL‐53(Al) membrane exhibits very high permeance for H2 in the mixtures separation (above 1.5 × 10?6 mol m?2 s?1 Pa?1) due to its large cavity, resulting in a very high separation power. The details of the temperature effect on the permeances of H2 over other gases are investigated from 288 to 353 K. The supported NH2‐MIL‐53(Al) membranes with high hydrogen separation power possess high stability, resistance to cracking, temperature cycling and show high reproducibility, necessary for the potential application to hydrogen recycling.  相似文献   

6.
We have developed a longitudinally excited CO2 laser without a high-voltage switch. The laser produces a short laser pulse similar to those from TEA and Q-switched CO2 lasers. This system, which is the simplest short-pulse CO2 laser yet constructed, includes a pulsed power supply, a high-speed step-up transformer, a storage capacitor, and a laser tube. At high pressure (4.2 kPa and above), a rapid discharge produces a short laser pulse with a sharp spike pulse. In mixed gas (CO2: N2: He = 1: 1: 2) at a pressure of 9.0 kPa, the laser pulse contains a spike pulse of 218 ns and has a pulse tail length of 16.7 μs.  相似文献   

7.
We report fifty seven CW FIR emissions observed in NH3, by resonant pumping with a CO2 laser. Exact coincidences between IR absorption lines of the gas and emission lines of the CO2 laser have been carried out by Stark tuning. IR frequency shifts, up to 30 GHz, have allowed the pumping of forty three NH3 transitions. These FIR emissions correspond to thirty one different wavelengths in the 50–400 μm range; eighteen ones of them are new emitted wavelengths by pumping with the CO2 laser.  相似文献   

8.
High‐flux nanoporous single‐layer graphene membranes are highly promising for energy‐efficient gas separation. Herein, in the context of carbon capture, a remarkable enhancement in the CO2 selectivity is demonstrated by uniquely masking nanoporous single‐layer graphene with polymer with intrinsic microporosity (PIM‐1). In the process, a major bottleneck of the state‐of‐the‐art pore‐incorporation techniques in graphene has been overcome, where in addition to the molecular sieving nanopores, larger nonselective nanopores are also incorporated, which so far, has restricted the realization of CO2‐sieving from graphene membranes. Overall, much higher CO2/N2 selectivity (33) is achieved from the composite film than that from the standalone nanoporous graphene (NG) (10) and the PIM‐1 membranes (15), crossing the selectivity target (20) for postcombustion carbon capture. The selectivity enhancement is explained by an analytical gas transport model for NG, which shows that the transport of the stronger‐adsorbing CO2 is dominated by the adsorbed phase transport pathway whereas the transport of N2 benefits significantly from the direct gas‐phase transport pathway. Further, slow positron annihilation Doppler broadening spectroscopy reveals that the interactions with graphene reduce the free volume of interfacial PIM‐1 chains which is expected to contribute to the selectivity. Overall, this approach brings graphene membrane a step closer to industrial deployment.  相似文献   

9.
The combined effect of V2O5 and NH3 on thermal oxidation of InP in a wet oxygen atmosphere is investigated experimentally.Translated from Mikroelektronika, Vol. 34, No. 1, 2005, pp. 51–55.Original Russian Text Copyright © 2005 by Mittova, Lavrushina, Sycheva.  相似文献   

10.
Previously, the Institute of Thermoelectricity has created Bi2Te3-based modules with an efficiency of ~7% in the temperature range of 30°C to 300°C, with legs that employed homogeneous thermoelectric materials. Herein, we present the results of development of such modules with legs made of inhomogeneous materials. Based on the theory of optimal control and object-oriented computer technology, programs to determine the requirements for material properties in the inhomogeneous legs were created. It was established that introduction of inhomogeneity in the form of continuous and step changes in three-segment n- and p-type legs yields almost identical efficiency increases of about 15%. Use of two segments reduces this value of 10% to 12%. Modules with two-segment legs encapsulated in thin-walled metal cases filled with inert gas have been built, yielding improved efficiency of 7.8% to 8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号