首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
采用金刚石膜电极的电化学方式在专用水基清洗剂中不断产生强氧化剂过氧焦磷酸根离子(P2O4-8),并将此方式作为金刚石膜电化学清洗工艺步骤的第一步,用于氧化去除硅片表面的有机沾污.通过与RCA清洗进行对比实验,并应用X射线光电子谱和原子力显微镜进行清洗效果的检测,结果表明,本清洗工艺处理后的硅片表面有机碳含量更少,微粗糙度小,明显优于现有的RCA清洗工艺.  相似文献   

2.
提出了一种采用电化学去除硅片表面有机物的新的清洗方法,用金刚石膜电极作为阳极,电化学氧化硫酸铵溶液生成稳定的强氧化溶液,电解液的氧化性通过间接碘量法测量。通过大量实验,优化初始电解液的浓度以及初始温度等因素,得到氧化强度最佳的电化学清洗液。用自制氧化液进行硅片表面有机物的清洗实验,并与传统的RCA清洗方法进行对比。通过XPS分析可知,采用新的电化学氧化溶液清洗后的硅片表面有机物去除效果明显优于对比实验样品。  相似文献   

3.
一种去除化学机械抛光后残留有机物的新方法   总被引:2,自引:0,他引:2  
提出硅片化学机械抛光后表面残留的有机物污染,介绍金刚石膜电化学合成过氧化物的方法与原理.根据有机物易被氧化分解的特性,采用金刚石膜电化学法合成过氧化物,利用过氧化物的氧化性氧化分解硅片化学机械抛先后表面的有机物残留配合特选的表面活性剂,并加超声清洗,物理化学方法结合,从而达到去除有机物污染的目的.实验表明,利用金刚石膜电化学法合成的过氧化物配合特选的表面活性剂作为清洗试剂,加超声进行清洗,能够有效去除硅片化学机械抛光后表面的有机物残留,达到较好的清洗效果.  相似文献   

4.
新型抛光后晶片表面金属离子清洗工艺   总被引:2,自引:1,他引:1  
本文提出了一种新型的利用金刚石膜电极电化学氧化进行抛光后晶片金属离子污染的清洗方法。金刚石膜电极电化学氧化,可以制备氧化性强的过氧焦磷酸盐,过氧焦磷酸盐可以有效的氧化表面有机物,同时过氧焦磷酸盐被还原成的焦磷酸盐具有很强的配合力,它能与铜等金属离子络合。将三块晶片在0.01mol/L的CuSO4溶液中进行金属离子污染后进行清洗对比实验。对比实验有三部分,一是采用金刚石膜电化学氧化制备的过氧焦磷酸盐进行清洗,二是传统的RCA清洗方法,三是去离子水清洗。XPS测试结果表明,过氧焦磷酸盐清洗与RCA清洗方法对金属离子的去除效果均小于ppm级。过氧焦磷酸盐清洗对有机物的清洗效果优于传统的RCA清洗方法。因此金刚石膜电化学氧化清洗方法可以有效去除有机污染以及金属离子污染,实现了一剂多用,减少清洗步骤,达到节能环保的目的。  相似文献   

5.
电化学清洗在太阳能电池制绒前的应用   总被引:1,自引:0,他引:1  
在太阳能电池制造工业中,为解决硅片制绒前的传统表面处理存在的药剂消耗多以及硅片去除量大的问题,引入电化学清洗的方法。这种方法是利用专用试剂电解后的强氧化性质,通过腐蚀、氧化与清洗的结合,有效清洗硅片表面有机物,且硅片去除量小。从实验中可以看出,去除量减少了1/2。通过应用金刚石膜电极,可高效生产专用试剂电解液。通过XPS显示,电化学清洗能够有效去除有机物污染。对比了电化学清洗与RCA清洗后硅片制绒的效果,证明电化学清洗的制绒效果良好。使用后的电解液经过电极处理后,仍能有效重复使用,说明电化学清洗可有力地控制排放,是大型工业生产中有效去除有机物的方法。  相似文献   

6.
清洗后硅片表面的电子结构   总被引:1,自引:0,他引:1  
介绍了一种含表面活性剂和螯合剂的新型半导体清洗剂和清洗工艺。利用红外吸收谱、X射线光电子谱和原子力显微镜等 ,把它和标准 RCA清洗工艺的清洗效果做了比较。测试结果表明 ,经清洗过的硅片表面主要是由硅、氧和碳三种元素组成 ,它们分别以 Si-O键、C-O键和 Si-C键的形式存在。两种清洗技术都在硅片表面产生氧化硅层 ,在硅片表面都存在有机碳污染 ,但新型半导体清洗工艺产生的有机碳污染少于标准 RCA清洗。在对硅片表面的粗糙化影响方面 ,新型半导体清洗技术清洗明显优于标准 RCA清洗技术  相似文献   

7.
半导体硅片清洗工艺发展方向   总被引:6,自引:0,他引:6  
对半导体硅片传统的RCA清洗办法中各种清洗液的清洗原理、清洗特点、清洗局限以及清洗对硅片表面微观状态的影响进行了详细的论述,同时在此基础上,对新的清洗办法(改进的RCA清洗办法)进行了一定的说明,指出了硅片清洗工艺的发展方向。  相似文献   

8.
本文针对抛光后晶片的颗粒和有机污染物提出了一种新型清洗方法,它结合了非离子表面活性剂和掺硼金刚石膜(BDD)阳极电化学氧化的优势。非离子表面活性剂可以在抛光后晶片上形成一层保护膜,使晶片表面颗粒易于去除。颗粒去除对比实验结果通过金相显微镜观察得知,体积比为1%的非离子表面活性剂的颗粒去除效果最佳。然而表面活性剂保护膜本身属于有机物,它最终也需要被去除。金刚石膜阳极电化学氧化(BDD-EO)可以用来去除有机物,因为它可以有效降解有机物。三个有机污染物去除对比实验分别为:一是先用非离子表面活性剂再用BDD-EO,二是单纯用BDD-EO去除有机物,第三种是用传统RCA清洗技术。通过XPS检测结果表明,用BDD-EO清洗的晶片表面的有机残留明显少于传统RCA技术,并且晶片表面的非离子表面活性剂也可以有效去除。  相似文献   

9.
用含表面活性剂和螯合剂的清洗液清洗硅片的研究   总被引:10,自引:3,他引:7  
目前半导体工业生产中普遍采用的清洗技术是 RCA清洗技术 .文中介绍了一种含表面活性剂和螯合剂的新型半导体清洗剂和清洗技术 .并利用 X射线光电子谱和原子力显微镜等测试方法 ,分别比较了用两种清洗技术清洗过的硅片表面 .测试结果表明 ,它们的去污效果基本相当 .但对硅片表面的粗糙化影响方面 ,新型半导体清洗技术优于标准 RCA清洗技术 .  相似文献   

10.
目前半导体工业生产中普遍采用的清洗技术是RCA清洗技术.文中介绍了一种含表面活性剂和螯合剂的新型半导体清洗剂和清洗技术.并利用X射线光电子谱和原子力显微镜等测试方法,分别比较了用两种清洗技术清洗过的硅片表面.测试结果表明,它们的去污效果基本相当.但对硅片表面的粗糙化影响方面,新型半导体清洗技术优于标准RCA清洗技术.  相似文献   

11.
This paper presents a new cleaning process for particle and organic contaminants on polished silicon wafer surfaces.It combines a non-ionic surfactant with boron-doped diamond(BDD) film anode electrochemical oxidation. The non-ionic surfactant is used to remove particles on the polished wafer's surface,because it can form a protective film on the surface,which makes particles easy to remove.The effects of particle removal comparative experiments were observed by metallographic microscopy,which showed tha...  相似文献   

12.
This paper presents a new cleaning process using boron-doped diamond(BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces.The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide,pyrophosphate peroxide can oxidize organic contaminants,and pyrophosphate peroxide is deoxidized into pyrophosphate.Pyrophosphate,a good complexing agent,can form a metal complex,which is a structure consisting of a copper ion,bonded to a surrou...  相似文献   

13.
In order to decrease the consumption of reagents and silicon during removal of surface contamination before silicon texturing in solar cell manufacturing industry, a new low-cost surface treatment approach of electrochemical cleaning technique(ECT) is reported. In this technique, a powerful oxidizing electrolyte was obtained from the electrochemical reaction on Boron-doped Diamond(BDD) electrodes, and applied during removal of surface contaminations on silicon wafer surfaces. The slightly polished monocryst...  相似文献   

14.
Wafer cleanliness and surface roughness play a paramount role in an anodic bonding process. Impurities and the roughness on the wafer surface result in unbonded areas which lead to fringes and Newton׳s rings. With an augment in surface roughness, lesser area will be in stroke thus making more pressure and voltage to be applied onto the wafers for better bonding. Eventually it became mandatory to choose the best cleaning process for the bonding technology that can substantially reduce the impurities and surface roughness. In this paper, we investigate the bonding of silicon/oxidized silicon on Pyrex (CORNING 7740) glass with respect to surface roughness and cleanliness of the wafers by performing three renowned cleaning processes such as degreasing, piranha, RCA 1& 2 (SC‐Standard Cleaning 1 and 2) and found that RCA compromises the best between the roughness and cleanliness. Studies were also extended to find out the effects of applied voltage and load on the bonded surface. It was observed for samples cleaned with RCA, an increase of 45% in maximum current and decrease of 75% in total bonding time with the applied load and voltage among all the cleaning techniques used. Three dimensional structures for pressure sensor application were successfully bonded by selecting the appropriate load and cleaning process. Atomic force microscopy analysis was done to investigate the surface roughness on silicon/oxidized silicon and Pyrex glass for different cleaning processes. Scanning electron microscopy and optical imaging were performed on the interface for the surface integrity of the bonded samples.  相似文献   

15.
论述了集成电路制备中Si衬底CMP过程中引入的金属杂质的危害,分析了目前CMP后清洗中金属杂质去除方法的现状和存在问题,通过对金属杂质在Si片表面的吸附进行理论分析,提出了用金刚石膜电化学清洗方法去除.该方法通过阴极对金属离子的吸附并放电还原,达到了去除微量金属杂质的目的,同时使难以去除的重金属杂质也得到了有效去除,减少了环境污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号