共查询到20条相似文献,搜索用时 31 毫秒
1.
空间调制技术(SM)作为一种新颖的多天线传输方案,近年来受到业界的广泛注意。它将输入信息比特分为两部分,一部分用于激活天线,另一部分用于信号调制,来共同承载发送信息。由于SM系统的最大似然(ML)最优检测算法需要穷举搜索激活天线序号和发送的数字调制符号的所有可能情况,它的检测复杂度很高。为此,人们相继提出了一些简化算法。与这些算法思路不同,本文从传统ML最优表达式出发,引入极坐标得到关于星座点幅度和相角的ML等价表达式,同时根据星座点相角的分布特性对相角进行近似,得到了一种新的次最优检测算法。新算法的检测性能比其他次优算法更接近ML,而且计算复杂度低。最后本文通过计算机仿真,验证了新算法的有效性。 相似文献
2.
空间调制是近年来提出的一种新型多天线传输技术。研究了基于M算法的最大似然检测算法(M-ML),并提出了优化算法,这个算法通过限制最大似然检测算法的搜索空间,从而减少了最优解码器的算法复杂度。仿真结果表明,通过仔细选择M的值,该算法可在明显的降低算法复杂度同时能保持接近最佳误码率的性能。 相似文献
3.
针对广义空间调制( GSM)系统接收端最大似然( ML)检测算法计算复杂度极高的缺点,提出了一种基于压缩感知( CS)信号重构理论的低复杂度信号检测算法。首先,在多输入多输出( MI-MO)信道模型下,通过改进正交匹配追踪( OMP)算法,得到一个激活天线索引备选集;然后,利用ML算法在该备选集中进行遍历搜索,检测出激活天线索引和星座调制符号。仿真结果表明所提算法的检测性能接近于ML算法,且复杂度约为ML算法的2%。因此,所提算法在保证检测性能的同时也大大降低了计算复杂度,实现了检测性能与复杂度之间的平衡。 相似文献
4.
该文提出了一种瑞利衰落信道下差分酉空时调制系统中多符号差分球形译码的改进算法。该算法在执行球形译码的最大似然度量搜索时,仅对具有较小最大似然度量的部分测试符号进行搜索,从而大大减少了搜索的次数,同时提出了一种逐项进行的最大似然度量计算方法,可以尽早发现超过搜索范围的测试符号并终止计算,在避免无谓的运算负担的同时得到所需的具有较小最大似然度量的部分测试符号。仿真表明,在适中的信噪比范围内,该算法在牺牲少量系统性能的基础上降低了超过50%的运算量。 相似文献
5.
6.
7.
8.
9.
正交空间调制的低复杂度检测算法 总被引:1,自引:0,他引:1
针对正交空间调制(QSM)系统中激活天线数的不确定性、最大似然(ML)检测算法复杂度极高的缺点,提出了一种低复杂度检测算法.首先,该算法基于压缩感知(CS)信号重构理论,对系统模型进行重构,使固定激活天线系统中的低复杂度算法可以在新的系统模型中使用;然后,借鉴正交匹配追踪(OMP)算法的思想,选出一个激活天线备选集;最后,通过ML算法搜索备选集,选出激活天线和调制符号.仿真结果显示,相比ML检测算法,所提算法在性能丢失较小的情况下,降低了约90%的复杂度. 相似文献
10.
提出了裁减自动球形译码(PASD)算法。该算法利用统计裁减有效减小了自动球形译码(ASD)算法中边界节点列表的大小S,并可通过对参数的适当设置获得误符号率性能与复杂度之间的折衷。分析与仿真表明,当采用较高电平调制(电平数大于4)时,在相同信噪比范围内,PASD在几乎不损失误符号率性能的前提下,较ASD节省大于30%的比较次数。 相似文献
11.
针对MQAM信号,已有低复杂度的最优检测算法,但是针对MPSK信号还没有类似的最优检测算法发表,因此从二维矢量量化的ML解调角度出发,利用MPSK星座图的特性,给出了与调制符号阶数无关的ML简化算法,避免了ML联合检测算法中对调制符号空间的搜索,极大地降低了算法复杂度。新算法不仅与ML最优检测算法具有完全相同的性能,而且具有较低的复杂度,有较好的理论和实际意义。该算法在天线技术和绿色通信技术中有较好的实际应用意义。 相似文献
12.
具有低检测复杂度且可快速收敛的自适应空时均衡算法是实现多用户协作MIMO分布式空时编译码的关键。该文研究了分布式垂直型贝尔实验室分层空时编码(D-VBLAST)在多天线接收端的空时判决反馈均衡(DFE),提出了基于最小二乘准则的RLS-MIMO-DFE检测算法。相对于分布式VBLAST的极大似然(ML),迫零-排序串行干扰消除(ZF-OSIC)等检测算法,该算法可以达到快速收敛,且具有较低的检测复杂度。理论计算和仿真研究表明,在分布式VBLAST 22系统中,尽管RLS-MIMO-DFE算法性能稍逊于ML检测,但该算法可以有效折衷检测性能与计算复杂度,且自适应信道变化,可满足协作MIMO下行链路节点的实时性处理要求。 相似文献
13.
14.
15.
Generalized spatial modulation (GSM) is an extension of spatial modulation which is significant for the next generation communication systems. Optimal detection process for the GSM is the maximum-likelihood (ML) detection which jointly detects the antenna combinations and transmitted symbols. However, the receiver is much more complicated than SM due to inter-antenna interference and/or increased number of combinations. Therefore, the computational complexity of the ML detection grows with the number of transmit antennas and the signal constellation size. In this letter, we introduce a novel and simple detection algorithm which uses sub-optimal method based on the least squares solution to detect likely antenna combinations. Once the antenna indices are detected, ML detection is utilized to identify the transmitted symbols. For obtaining near-ML performance while keeping lower complexity than ML detection, sphere decoding is applied. Our proposed algorithm reduces the search complexity while achieving a near optimum solution. Computer simulation results show that the proposed algorithm performs close to the optimal (ML) detection resulting in a significant reduction of computational complexity. 相似文献
16.
Adnan Ahmed Khan Sajid Bashir Muhammad Naeem Syed Ismail Shah Xiaodong Li 《International Journal of Communication Systems》2008,21(12):1239-1257
Symbol detection in multi-input multi-output (MIMO) communication systems using different particle swarm optimization (PSO) algorithms is presented. This approach is particularly attractive as particle swarm intelligence is well suited for real-time applications, where low complexity and fast convergence is of absolute importance. While an optimal maximum likelihood (ML) detection using an exhaustive search method is prohibitively complex, PSO-assisted MIMO detection algorithms give near-optimal bit error rate (BER) performance with a significant reduction in ML complexity. The simulation results show that the proposed detectors give an acceptable BER performance and computational complexity trade-off in comparison with ML detection. These detection techniques show promising results for MIMO systems using high-order modulation schemes and more transmitting antennas where conventional ML detector becomes computationally non-practical to use. Hence, the proposed detectors are best suited for high-speed multi-antenna wireless communication systems. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Kyle Govindasamy HongJun Xu Narushan Pillay 《International Journal of Communication Systems》2018,31(1)
Space‐time block coded spatial modulation (STBC‐SM) exploits the advantages of both spatial modulation and the Alamouti space‐time block code. Meanwhile, space‐time labeling diversity has demonstrated an improved bit error rate (BER) performance in comparison to the latter. Hence, in this paper, we extend the application of labeling diversity to STBC‐SM, which is termed STBC‐SM‐LD. Under identical channel assumptions, STBC‐SM‐LD exhibits superior BER performance compared to STBC‐SM. For example, with 4 × 4, 64‐quadrature amplitude modulation (64‐QAM), STBC‐SM‐LD has a BER performance gain of approximately 2.6 dB over STBC‐SM. Moreover, an asymptotic bound is presented to quantify the average BER performance of M‐ary QAM STBC‐SM‐LD over independent and identically distributed Rayleigh frequency‐flat fading channels. Monte Carlo simulations for STBC‐SM‐LD agree well with the analytical framework. In addition to the above, low‐complexity (LC) near‐maximum‐likelihood detectors for space‐time labeling diversity and STBC‐SM‐LD are presented. Complexity analysis of the proposed LC detectors shows a substantial reduction in computational complexity compared to their ML detector counterparts. For example, the proposed detector for STBC‐SM‐LD achieves a 91.9% drop in computational complexity for a 4 × 4, 64‐QAM system. The simulations further validate the near‐maximum‐likelihood performance of the LC detectors. 相似文献
18.
19.
In this paper, a threshold bounded antenna selection scheduler (TBS) and a computational complexity bounded antenna selection scheduler (CCBS) are proposed to reduce computational complexity in multiple input multiple output (MIMO) uplink. In contrast to previous works, a spatially correlated MIMO channel model is considered and a transmitter correlation value (TCV) is newly introduced to assist the antenna selection in addition to the channel gain. For the TBS or CCBS, with predetermined threshold of TCV or ratio of successful antennas (RSAs), full searching (FS) and sub searching (SS) are applied more efficiently to user equipments (UEs) compared with previous schedulers. As a result, the number of candidate antennas in the scheduling set can be reduced, which translates into a lower computational complexity in terms of number of evaluated antenna combinations. Additionally, compared with the TBS, the peak computational complexity can be further reduced by the CCBS. Simulation results show that with proposed schedulers the computational complexity can be reduced by at least 50% with an acceptable compromise of capacity. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
一种低复杂度的MMSE-QRD-QRDM检测方法被提出,该算法根据接收端各子流的信干噪比(SINR)和门限值的比较,对各子流分别进行最小均方误差QR分解(MMSE-QRD)检测或QR分解-M(QRD-M)检测。对MMSE-QRD-QRDM算法进行了误码率(BER)性能仿真和算法复杂度分析。结果表明,和OSD-MLD算法相比,MMSE-QRD-QRDM算法可以在大大降低检测算法复杂度的情况下,获得优于OSD-MLD算法的BER性能,同时通过减少运算中的矩阵求逆次数,提高了算法的数值稳定性。 相似文献