首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
提出了NSA多尺度模型.该模型摒弃了LSA模型中不同尺度的图像间具有线性映射关系的假设.首先利用神经网络建立不同尺度图像间的映射关系;其次使用反向传播算法训练神经网络确定这种映射关系;最后根据该映射关系由低分辨率图像估计高分辨率图像.利用对比度相似性量化估计图像与目标图像间的相似程度.将该模型用于人脸识别,提出利用梯度算子进行图像分割提高识别的准确性.实验结果表明,以该模型分析得到的对比度相似性为95.3634%;以该模型为基础的人脸识别系统对光照具有很好的鲁棒性.  相似文献   

2.
储备池计算概述   总被引:2,自引:0,他引:2  
彭宇  王建民  彭喜元 《电子学报》2011,39(10):2387-2396
针对传统递归神经网络存在训练困难的问题,一种新的递归神经网络的训练方法——储备池计算被提出,这种方法的核心思想是只训练网络部分连接权,其余连接权一经产生就不再改变,网络的训练一般只需要通过求解线性回归问题.广义地说,储备池可以作为一种时序相关的核函数使用,从而完全拓展了其应用领域,使之不再仅仅是递归神经网络训练算法的一...  相似文献   

3.
在语种识别过程中,为提取语音信号中的空间特 征以及时序特征,从而达到提高多语 种识别准确率的目的,提出了一种利用卷积循环神经网络(convolutional recurrent neural network,CRNN)混合神经网络的多语种识别模型。该模型首先提 取语音信号的声学特征;然后将特征输入到卷积神经网络(convolutional neural network,CNN) 提取低维度的空间特征;再通过空 间金字塔池化层(spatial pyramid pooling layer,SPP layer) 对空间特征进行规整,得到固定长度的一维特征;最后将其输入到循环神经 网络(recurrenrt neural network,CNN) 来判别语种信息。为验证模型的鲁棒性,实验分别在3个数据集上进行,结果表明:相 比于传统的CNN和RNN,CRNN混合神经网络对不同数据集的语种识别 准确率均有提高,其中在8语种数据集中时长为5 s的语音上最为明显,分别提高了 5.3% 和6.1%。  相似文献   

4.
    
The precision of forecasting rainfall is vital owing to current world climate change. As deterministic weather forecasting models are usually time consuming, it becomes challenging to efficiently use this large volume of data in hand. Machine learning methods are already proven to be good replacement for traditional deterministic approaches in weather prediction. This paper presents an approach using recurrent neural networks (RNN) and long short term memory (LSTM) techniques to improve the rainfall forecast performance. This will be compared with the random forest classifier and XGBoost as well. The goal is to predict a set of hourly rainfall levels from sequences of weather radar measurements. Python libraries are utilized to forecast the time series data. The training set comprises of data from first 20 days of every month and the inference set data from the continuing days. This makes sure that both train and inference sets are more or less independent. The idea resides in implementing an end‐to‐end learning framework.  相似文献   

5.
针对云服务器系统运行环境具有非线性、随机性和突发性的特点,提出了基于整合移动平均自回归和循环神经网络组合模型(ARIMA-RNN)的软件老化预测方法.首先,采用ARIMA模型对云服务器时间序列数据进行老化预测;然后,利用灰色关联度分析法计算时间序列数据的相关性,确定RNN模型的输入维度;最后,将ARIMA模型预测值和历...  相似文献   

6.
    
UAVs are capable of providing significant potential to IoT devices through sensors, cameras, GPS systems, and so forth. Therefore, the smart UAV-IoT collaborative system has become a current hot research topic. However, other concerns require in-depth investigation and study, such as resource allocation, security, privacy preservation, trajectory optimization, intelligent decision-making, energy harvesting, and so forth. Here, we suggest a task-scheduling method that splits IoT devices into distinct clusters based on physical proximity and saves time and energy. Cluster heads can apply an auto regressive moving average (ARMA) model to predict intelligently the timestamp of the arrival of the next task and associated estimated payments. Based on the overall expected payment, a cluster head can smartly advise the UAV about its time of next arrival. According to the findings of the simulation, the proposed ETTS algorithm significantly outperforms Task TSIE and TDMA-WS in terms of energy use (67%) and delays (36%).  相似文献   

7.
王奕峰  周婷  徐天衡 《电讯技术》2023,63(5):611-617
在上行非正交多址(Non-orthogonal Multiple Access, NOMA)系统中,针对传统基于串行干扰消除(Successive Interference Cancellation, SIC)检测存在同个时频块内用户间干扰的问题,提出了一种新型的NOMA检测算法。通过将SIC检测的反馈消除结构和深度神经网络结合起来,设计出了一种新型的反馈深度神经网络(Feedback Deep Neural Network, FDNN)结构。FDNN模型分为两个模块,检测模块通过深度神经网络实现非线性检测,反馈模块通过权重矩阵重构信号并消除用户干扰。通过重复检测和反馈过程,FDNN依次检测出各个用户的符号,并达到了良好的性能。仿真结果表明FDNN检测算法相较于SIC检测具有更低的误符号率和误比特率,并验证了其具有更良好的抗用户间干扰的性能。  相似文献   

8.
海杂波是雷达在海洋表面采集到的海面电磁散射回波.受海洋环境要素(风速、风向、浪高、浪向等)和雷达参数的影响,其幅度随时间具有随机起伏性,海杂波的幅度预测精度的提高有助于增加目标检测准确度.本文结合海杂波非高斯非线性的特点,提出了基于门控循环神经网络的海杂波幅度预测方法.通过对IPIX雷达和P波段雷达海杂波实测数据的预测分析,结果表明,本文方法相对已有传统方法具有更高的预测精度.  相似文献   

9.
         下载免费PDF全文
Artificial intelligence (AI) processes data-centric applications with minimal effort. However, it poses new challenges to system design in terms of computational speed and energy efficiency. The traditional von Neumann architecture cannot meet the requirements of heavily data-centric applications due to the separation of computation and storage. The emergence of computing in-memory (CIM) is significant in circumventing the von Neumann bottleneck. A commercialized memory architecture, static random-access memory (SRAM), is fast and robust, consumes less power, and is compatible with state-of-the-art technology. This study investigates the research progress of SRAM-based CIM technology in three levels: circuit, function, and application. It also outlines the problems, challenges, and prospects of SRAM-based CIM macros.  相似文献   

10.
    
The omnipresence of drones in the civilian air space has led to their malicious usage raising high alert security issues. In this paper, a deep learning approach to detect and identify drones and to determine their flight modes from the remotely sensed radio frequency (RF) signatures is presented. This work intends to detect the presence of drones using two-class classification, the presence along with identification of their make using four-class classification. And this is further extended to the determination of their flight modes using ten-class classification. It employs the proposed architectures of prominent deep learning classifiers, namely, autoencoder (AE), long short-term memory (LSTM), convolutional neural network (CNN), and CNN-LSTM hybrid model. To procure the relevant information from 227 RF signatures having 100 fragments each, the seven significant temporal statistical features, namely, maxima, minima, mean, variance, skewness, kurtosis, and root mean square, are extracted. In a two-class classification scenario, all considered classifiers perform near to idle, whereas in a four-class classification scenario, CNN performs best, followed by AE, CNN-LSTM, and LSTM, respectively. Moreover, in a ten-class classification scenario, AE far outperforms CNN, followed by LSTM and CNN-LSTM, respectively. The best performance in terms of accuracy and classification time confirms the feasibility of the proposed AE classifier for the three considered drone operations.  相似文献   

11.
霍紫晴  山蕊  冯雅妮  高旭  冯煜 《光电子.激光》2022,33(12):1315-1322
卷积神经网络(convolutional neural network, CNN)作为传统神经网络的改进,已经得到了广泛的应用。然而,在CNN性能提升的同时其模型的规模不断扩大,对存储及算力的要求越来越高,基于冯·诺依曼体系结构的处理器难以达到令人满意的高处理性能。为了提升系统性能,近存储计算(near memory computing, NMC)成为了一个具有发展前景的研究方向。本文利用一种支持NMC的可重构阵列处理器实现手写数字识别,并行地实现了卷积运算;同时利用共享缓存阵列结构,减少片外存储的频繁访问。实验结果表明,在110 MHz的工作频率下,执行单个5×5卷积运算的计算速度提升了75.00%,可以在9 960μs内实现一个手写数字的识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号