首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 25 毫秒
1.
原子磁强计以其高灵敏度和成本低等优势受到了越来越多的关注,如今,进一步提高原子磁强计的芯片集成度已成为主要趋势,因为它有利于生物磁性测量与成像。但是,目前实现原子磁强计小型化的主要障碍是微加工原子气室的光学元件分立。鉴于此,笔者提出一种基于新兴超表面的超紧凑片上原子气室方案,该方案将超表面与各向异性腐蚀的单晶硅相结合,在保证高灵敏度的同时提高了原子气室的集成度。该方案能够对圆偏振入射光束进行光路操纵,效率可达到80%。超表面采用厚度为500 nm的硅设计而成,可以通过基本的微加工工艺直接在原子气室上制造。所设计的新型原子气室具有集成度高、可大批量制造的优点,为未来生物磁性传感系统的发展提供了参考。  相似文献   

2.
半导体激光器作为原子磁强计的重要组成部分,其波长和功率主要由电流和温度决定,而传统的直流温控系统会对磁强计产生磁场干扰。针对高精度电流控制、温度控制和磁场干扰问题,设计了一种激光器恒流源驱动和交流控温系统。首先,设计基于功放的高精度激光器恒流源驱动系统;然后,设计交流温度调制解调检测和交流加热驱动系统;最后,采用STM32控制器、高精度AD采集和DA输出结合温度模糊自适应PID控制算法进行高精度温度控制。实验结果表明:在42℃温度下控制精度为0.005℃,在32 mA电流下稳定度为0.5 A,为激光器光功率和波长稳定性奠定基础。  相似文献   

3.
在无自旋交换弛豫(Spin-Exchange Relaxation-Free,SERF)原子磁强计中,半导体激光器被用于极化碱金属原子和检测原子极化率,激光器出射光稳定与否直接关系到SERF原子磁强计的灵敏度,为了保证半导体激光器稳定工作,需要高性能的电流和温度控制单元。通过对激光器控制原理进行研究,以温度控制模块MTD415T和电流控制模块MLD203CHB为核心,通过"集成芯片+外部保护/降噪电路+上位机"的方式构建了一套半导体激光器驱动系统,实现了半导体激光器高稳定性的温度和电流控制,温度稳定性优于±5.0 m K,电流稳定性优于±2.1μA,同时相比较商用的控制器,体积大幅度缩小,促进了SERF原子磁强计的小型集成化。  相似文献   

4.
基于LabVIEW软件和数据采集卡开发设计了一种虚拟的多路时序控制系统,并用于激光冷却原子实验的冷原子温度测量中,实现了对冷却光、磁场、再泵浦光、探测光以及CCD开启和关闭的计算机自动控制,时序脉冲的延时时间和脉冲宽度的调节精度小于1μs。实验表明,该系统能大大提高冷原子实验过程的调试效率和控制精度。  相似文献   

5.
于凤芹 《信号处理》2005,21(Z1):36-39
由语音信号的产生机理决定其呈现明显的非平稳特性,传统的信号分析方法不能刻画其局部时变结构.本文提出了基于三参数Chirp原子分解的语音信号的时频表示,该方法把语音信号分解为由比例、旋转、径向位移表示的三参数Chirp时频原子的线性组合,并用这些Chirp原子的WVD的叠加来逼近语音信号的时频表示.仿真实验结果表明,该方法与WVD相比无交叉项干扰,与谱图相比具有较高的时频聚集性,并且还可以提供语音信号的局部时频结构的参数.  相似文献   

6.
建立了铯原子双磁光阱(MOT)系统用来制备腔量子电动力学(Cavity-QED)实验所需的处于超高真空(UHV)环境中的冷原子。采用一束聚焦的连续激光束将气室磁光阱从背景铯蒸气中冷却并将俘获到的冷原子有效地输运到超高真空磁光阱,实现了铯原子双磁光阱。实验中研究了输运光束的失谐量对于超高真空磁光阱中的稳态冷原子数的影响,同时对气室磁光阱和超高真空磁光阱的装载过程作了分析。气室磁光阱和超高真空磁光阱的典型气压分别约为1×10-6Pa和8×10-8Pa,典型的稳态冷原子数分别约为5×107和5×106,冷原子等效温度约72±4μK。  相似文献   

7.
原子光刻技术中,良好原子源的产生是最为基础的条件.针对实验中对原子束的具体要求,设计了一套超高真空原子源产生装置,主要参数为:系统工作真空度优于 5.0×10-5Pa,铬原子源温度为1650℃,铬原子最可几速率为960m/s,原子炉口所喷射出的铬原子数为N=1.5×1017s-1.  相似文献   

8.
本文就近二十年来国际上用于三维限制中性原子运动的磁囚禁原理、方案、特点及其最新发展进行了系统介绍与综述。根据构成磁阱的装置大小、磁场特征以及产生磁场方式的不同,可以将囚禁原子的各种磁阱分为宏观静磁囚禁、微观静磁囚禁和微波或交流磁囚禁三大类。最后,文章简单介绍了中性原子磁囚禁技术在玻色-爱因斯坦凝聚(BEC)和原子芯片中的最新应用。  相似文献   

9.
黄婷  缪存孝  万双爱  田晓倩  李瑞  叶建川 《红外与激光工程》2019,48(10):1013005-1013005(7)
核磁共振陀螺仪是基于量子调控技术的前沿研究,具有高精度、小体积、低功耗等显著优点,是未来高精度微小型陀螺的主要发展方向之一。原子气室内Xe核自旋的横向弛豫时间是衡量原子气室性能的一个重要参数,直接影响陀螺的角随机游走,准确快速地测量横向弛豫时间有利于研制性能更优的原子气室。根据推导的核自旋横向弛豫时间测量原理,基于LabVIEW软件平台设计了一种气室核自旋横向弛豫时间的自动化测试系统,实现了温度控制、氙共振频率找寻、磁场控制及数据处理存储功能。实际应用表明,采用自动化测试系统工作稳定可靠、测量效率高、测试精度高、人机交互性好,为检验核磁共振陀螺仪原子气室的性能提供了有效测试手段。  相似文献   

10.
新型原子滤光器-法拉第反常色散滤光器(FaradayAnomalousDisnersionOpticalFilter,FADOP)由置于正交们振场中的原子气室构成,它是利用在外部纵向磁场中原子能级的塞曼效应使谱线产生分裂,导致对线偏振入射光的左旋圆分量和右旋团分量的吸收和色散的不同而发生的旋光现象,即法拉第效应,在原子跃迁的中心频率附近进行超窄带滤光的.它的透射带宽一般在几个GHz县级(0.001nm),消光比可达10-5,并可以在一定范围内调谐,是一种性能优良的滤光器,在自由空间光通信、激光雷达、水下通信、遥感等领域中有重要应用前景。被动式PAD…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号