首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SnPb-SnAgCu mixed solder joints with Sn-Pb soldering Sn-Ag-Cu Pb-free components are inevitably occurred in the high reliability applications. In this study, the interfacial behaviors in Sn-37Pb and Sn-3.0Ag-0.5Cu mixed solder joints was addressed and compared with Sn-37Pb solder joints and Sn-3.0Ag-0.5Cu solder joints with the influence from isothermal aging and electromigration. Considering the difference on the melting point between Sn-3.0Ag-0.5Cu and Sn-37Pb solder, two mixed solder joints: partial mixing and full mixing between Sn-Pb and Sn-Ag-Cu solders were reached with the peak reflowing temperature of 190 and 250 °C, respectively. During isothermal aging, the intermetallic compound (IMC) layer increased with aging time and its growth was diffusion controlled. There was also no obvious affect from the solder composition on IMC growth. After electromigration with the current density of 2.0 × 103 A/cm2, Sn-37Pb solder joints showed the shortest lifetime with the cracks observed at the cathode for the stressing time < 250 h. In Sn-3.0Ag-0.5Cu Pb-free solder joints, current stressing promoted the growth of IMC layer at the interfaces, but the growing rate of IMC at the anode interface was far faster than that at the cathode interface. Therefore, there existed an obvious polarity effect on IMC growth in Sn-Ag-Cu Pb-free solder joints. After Sn-37Pb was mixed with Sn-3.0Ag-0.5Cu Pb-free solder, whether the partial mixing or the full mixing between Sn-Pb and Sn-Ag-Cu can obviously depress both the crack formation at the cathode side and the IMC growth at the anode.  相似文献   

2.
Sn-Ag-Cu solder is one of the candidate alternatives to Sn-Pb-based solders. In order to improve its performance, different materials have been added to Sn-Ag-Cu-based solders. Several studies on Sn-Ag-Cu-based solders with Bi additions have shown Sn-Ag-Cu-Bi to be a class of solders with good wetting behavior and good performance that show great promise for use in the electronics assembly and packaging industry. To investigate the mechanical reliability of the Sn-Ag-Cu-Bi solders further, single-lap shear creep characteristics have been studied in this work. Dog-bone-type solder joint specimens were formed using five types of solder alloys, Sn-3.0Ag-0.5Cu and Sn-3.0 Ag-0.5Cu-xBi (x = 1 wt.% to 4 wt.%) with Cu substrates, and creep tests were performed at temperatures of 120°C and 150°C under stresses of 5 MPa to 10 MPa. Results indicate that the rupture times for Sn-3.0Ag-0.5Cu-xBi solder joints up to 4 wt.% of Bi are longer than the rupture time for Sn-3.0Ag-0.5Cu. Stress exponents ranged from 3 to 7 for temperatures of 150°C and 120°C with stresses under 10 MPa. Microstructural analyses using scanning electron microscopy (SEM) were performed and related to the creep behavior of the solder joints.  相似文献   

3.
对比研究了三种典型标称成分的Sn-Ag-Cu钎料(即日本JEIDA推荐的Sn-3.0Ag-0.5Cu、欧盟IDEALS推荐的Sn-3.8Ag-0.7Cu和美国NEMI推荐的Sn-3.9Ag-0.6Cu)的显微组织特征、熔化特性、润湿性以及钎焊接头微焊点的力学性能等。结果表明,三种钎料的组织和性能非常接近。然而从性价比等方面综合考虑,Sn-3.0Ag-0.5Cu为三种钎料中最具优势的替代传统Sn-Pb钎料(共晶和近共晶钎料)的无铅合金。  相似文献   

4.
We developed a new lead-free solder alloy, an Sn-Ag-Cu base to which a small amount of Ni and Ge is added, to improve the mechanical properties of solder alloys. We examined creep deformation in bulk and through-hole (TH)␣form for two lead-free solder alloys, Sn-3.5Ag-0.5Cu-Ni-Ge and Sn-3.0Ag-0.5Cu, at elevated temperatures, finding that the creep rupture life of the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy was over three times better than that of the Sn-3.0Ag-0.5Cu solder at 398 K. Adding Ni to the solder appears to make microstructural development finer and more uniform. The Ni added to the solder readily combined with Cu to form stable intermetallic compounds of (Cu, Ni)6Sn5 capable of improving the creep behavior of solder alloys. Moreover, microstructural characterization based on transmission electron microscopy analyses observing creep behavior in detail showed that such particles in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy prevent dislocation and movement.  相似文献   

5.
Small amounts of the rare-earth element Ce were added to the Sn-rich lead-free eutectic solders Sn-3.5Ag-0.7Cu, Sn-0.7Cu, and Sn-3.5Ag to improve their properties. The microstructures of the solders without Ce and with different amounts (0.1 wt.%, 0.2 wt.%, and 0.5 wt.%) of Ce were compared. The microstructure of the solders became finer with increasing Ce content. Deviation from this rule was observed for the Sn-Ag-Cu solder with 0.2 wt.% Ce, and for the Sn-0.7Cu eutectic alloy, which showed the finest microstructure without Ce. The melting temperatures of the solders were not affected. The morphology of intermetallic compounds (IMC) formed at the interface between the liquid solders and a Cu substrate at temperatures about 40°C above the melting point of the solder for dipping times from 2 s to 256 s was studied for the basic solder and for solder with 0.5 wt.% Ce addition. The morphology of the Cu6Sn5 IMC layer developed at the interface between the solders and the substrate exhibited the typical scallop-type shape without significant difference between solders with and without Ce for the shortest dipping time. Addition of Ce decreased the thickness of the Cu6Sn5 IMC layer only at the Cu/Sn-Ag-Cu solder interface for the 2-s dipping. A different morphology of the IMC layer was observed for the 256-s dipping time: The layers were less continuous and exhibited a broken relief. Massive scallops were not observed. For longer dipping times, Cu3Sn IMC layers located near the Cu substrate were also observed.  相似文献   

6.
This study was concerned with the effect of thermal aging on the impact properties of solder joints. Three kinds of solders, conventional Sn-37Pb solder, Sn-3.8Ag-0.7Cu solder, and Sn-3.8Ag-0.7Cu doped with rare-earth (RE) elements, were selected to manufacture joint specimens for the Charpy impact test. U-notch specimens were adopted and isothermally aged at 150°C for 100 h and 1000 h, and then impacted by using a pendulum-type impact tester at room temperature. The Sn-37Pb solder joints exhibited higher performance in terms of impact absorbed energy in the as-soldered and 100 h thermally aged conditions. Interestingly, the Sn-3.8Ag-0.7Cu solder joints exhibited improved performance for the impact value after 1000 h of thermal aging. For the Sn-37Pb and Sn-3.8Ag-0.7Cu solder joints, the impact absorbed energies initially increased when the storage duration was limited to 100 h, and then gradually decreased with its further increase. For the Sn-3.8Ag-0.7Cu-RE specimens, impact performance decreased directly with increasing thermal aging. Furthermore, scanning electron microscopy (SEM) observation showed that the fracture paths were focused on the interface zone for the three kinds of joints in the aged conditions. For the Sn-37Pb joints, the fracture surfaces mainly presented a ductile fracture mode. For the Sn-3.8Ag-0.7Cu joints, with microstructure coarsening, crack propagation partly shifted towards the Sn/Cu6Sn5 interface. Compared with the 100 h aged joints, the area fraction of intergranular fracture of Sn grains on the Sn-3.8Ag-0.7Cu fracture surfaces was increased when the aging time was 1000 h. On the contrary, the fracture morphologies of Sn-3.8Ag-0.7Cu-RE were mainly brittle as thermal aging increased. Thus, an interrelationship between impact energy value and fracture morphology was observed.  相似文献   

7.
New Pb-free alloys that are variations of the Sn-Ag-Cu (SAC) ternary system, having reduced Ag content, are being developed to address the poor shock load survivability of current SAC305, SAC396, and SAC405 compositions. However, the thermal mechanical fatigue properties must be determined for the new alloys in order to develop constitutive models for predicting solder joint fatigue. A long-term study was initiated to investigate the time-independent (stress–strain) and time-dependent (creep) deformation properties of the alloy 98.5Sn-1.0Ag-0.5Cu (wt.% SAC105). The compression stress–strain properties, which are reported herein, were obtained for the solder in as-cast and aged conditions. The test temperatures were −25°C, 25°C, 75°C, 125°C, and 160°C and the strain rates were 4.2 × 10−5 s−1 and 8.3 × 10−4 s−1. The SAC105 performance was compared with that of the 95.5Sn-3.9Ag-0.6Cu (SAC396) solder. Like the SAC396 solder, the SAC105 microstructure exhibited only small microstructural changes after deformation. The stress–strain curves showed work-hardening behavior that diminished with increased temperature to a degree that indicated dynamic recrystallization activity. The aging treatment had a small effect on the stress–strain curves, increasing the degree of work hardening. The yield stresses of SAC105 were significantly less than those of SAC396. The aging treatment caused a small drop in yield stress, as is observed with the SAC396 material. The static modulus values of SAC105 were lower than those of SAC396 and exhibited both temperature and aging treatment dependencies that differed from those of the SAC396 material. These trends clearly show that the stress–strain behavior of Sn-Ag-Cu solders is sensitive to the specific, individual composition.  相似文献   

8.
In prior work, we showed that eutectic Sn-Pb solder joints exhibit superplastic behavior after rapid solidification. Further examples of superplasticity in nominally air-cooled solder joints are reported in this study of three low-melting point alloys: 40In-40Sn-20Pb (wt. %), eutectic 52In-48Sn, and 43Sn-43Pb-14Bi, which were creep-tested in shear at 20°, 65°, and 90° C. The test results indicate that above 65° C, the indium-containing solders have stress exponents between 2.4 to 2.9, a possible overall shear strains of 500%, and an absence of primary creep; at 90° C, 43Sn-43Pb-14Bi solder has a stress exponent close to 2.3. Optical microstructures of the three solders are presented; they help to explain the superplastic behavior.  相似文献   

9.
In this study, the effect of Zn (Zn = 1 wt.%, 3 wt.%, and 7 wt.%) additions to Sn-4Ag solder reacting with Ag substrates was investigated under solid-state and liquid-state conditions. The composition and microstructure of the intermetallic compounds (IMCs) significantly changed due to the introduction of different Zn contents. In the case of Sn-4Ag solder with 1 wt.% Zn, a continuous Ag-Sn IMC layer formed on the Ag substrates; discontinuous Ag-Zn layers and Sn-rich regions formed on the Ag substrates under liquid-state conditions when the Sn-4Ag solders contained 3 wt.% and 7 wt.% Zn. If 3 wt.% Zn was added to Sn-4Ag solder, the Ag-Sn IMC would be transformed into a Ag-Zn IMC with increasing aging time. Rough interfaces between the IMCs and the Ag substrates were observed in Sn-4Ag-7Zn/Ag joints after reflowing at 260°C for 15 min; however, the interfaces between the IMCs and the Ag substrates became smooth for Sn-4Ag-1Zn/Ag and Sn-4Ag-3Zn/Ag joints. The nonparabolic growth mechanism of IMCs was probed in the Sn-4Ag-3Zn/Ag joints during liquid-state reaction, and can be attributed to the detachment of IMCs. On the other hand, the effect of gravity was also taken into account to explain the formation of IMCs at the three different interfaces (bottom, top, and vertical) during the reflow procedure.  相似文献   

10.
The thermal fatigue endurance of two lead-free solder/plastic-core solder ball (PCSB) composite joint structures in low-temperature co-fired ceramic (LTCC) modules was investigated using a thermal cycling test over a temperature range of −55°C to 150°C. The investigated solder alloys were Sn-7In-4.1Ag-0.5Cu (SAC-In) and 95.5Sn-4Ag-0.5Cu (SAC). Three failure mechanisms were observed in the test joints. Transgranular (fatigue) cracking mixed with minor intergranular cracking was the dominant failure mechanism at the outer edge of the joints in both test assemblies, whereas separation of the solder/intermetallic compound (IMC) interface and creep cracking occurred in the other parts of the test joints. The propagation rate of the transgranular crack was lower in the SAC-In joints compared with in the SAC joints. Furthermore, the SAC solder seemed to be more prone to separation of the solder/IMC interface, and more severe intergranular (creep) cracking occurred in it compared with in the SAC-In solder. In the thermal cycling test conditions, the better thermal fatigue endurance of the SAC-In solder composite joints resulted in a 75% higher characteristic lifetime compared with the SAC composite joints.  相似文献   

11.
In this study, time-temperature-dependent nonlinear analyses of lead-free solder bumped wafer level chip scale package (WLCSP) on microvia buildup printed circuit board (PCB) assemblies subjected to thermal cycling conditions are presented. The lead-free solder considered is 96.5Sn-3.5Ag. The 62Sn-2Ag-36Pb solder is also considered to establish a baseline. These two solder alloys are assumed to obey the Garofalo-Arrhenius steady-state creep constitutive law. The shear stress and shear creep strain hysteresis loops, shear stress history, shear creep strain history, and creep strain density range at the corner solder joint are presented for a better understanding of the thermal-mechanical behavior of the lead-free solder bumped WLCSP on microvia buildup PCB assemblies  相似文献   

12.
Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (−55°C/+125°C) along with baseline SAC305 BGA joints beyond 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.  相似文献   

13.
Due to the toxicity of lead (Pb), Pb-containing solder alloys are being phased out from the electronics industry. This has lead to the development and implementation of lead-free solders. Being an environmentally compatible material, the lead-free Sn-3.0Ag-0.5Cu (wt.%) solder alloy is considered to be one of the most promising alternatives to replace the traditionally used Sn-Pb solders. This alloy composition possesses, however, some weaknesses, mainly as a result of its higher melting temperature compared with the Sn-Pb solders. A possible way to decrease the melting temperature of a solder alloy is to decrease the alloy particle size down to the nanometer range. The melting temperature of Sn-3.0Ag-0.5Cu lead-free solder alloy, both as bulk and nanoparticles, was investigated. The nanoparticles were manufactured using the self-developed consumable-electrode direct current arc (CDCA) technique. The melting temperature of the nanoparticles, with an average size of 30 nm, was found to be 213.9°C, which is approximately 10°C lower than that of the bulk alloy. The developed CDCA technique is therefore a promising method to manufacture nanometer-sized solder alloy particles with lower melting temperature compared with the bulk alloy.  相似文献   

14.
This study aims to investigate the shear and tensile impact strength of solder ball attachments. Tests were conducted on Ni-doped and non-Ni-doped Sn-0.7wt.% Cu, Sn-37wt.% Pb and Sn-3.0wt.% Ag-0.7wt.% Cu solder ball grid arrays (BGAs) placed on Cu substrates, which were as-reflowed and aged, over a wide range of displacement rates from 10 to 4000 mm/s in shear and from 1 to 400 mm/s in tensile tests. Ni additions to the Sn-0.7wt.% Cu solders has slowed the growth of the interface intermetallic compounds (IMCs) and made the IMC layer morphology smooth. As-reflowed Ni-doped Sn-0.7wt.% Cu BGA joints show superior properties at high speed shear and tensile impacts compared to the non-Ni-doped Sn-0.7wt.% Cu and Sn-3.0wt.% Ag-0.7wt.% Cu BGAs. Sn-3.0wt.% Ag-0.7wt.% Cu BGAs exhibit the least resistance in both shear and tensile tests among the four compositions of solders, which may result from the cracks in the IMC layers introduced during the reflow processes.  相似文献   

15.
The microstructures and mechanical properties of Sn-8.55Zn-0.5Ag-0.45Al-yGa (wt.%) lead-free solders were investigated. The y content of the solders investigated was 0.5–3.0 wt.%. The results indicate that Ga exhibits prominent influence in the microstructure as well as mechanical properties of the solders. By increasing Ga, the fraction of the Sn/Zn eutectic region decreases and the Sn-matrix region increases. An increase in the Ga content from 0.5 wt.% to 2.0 wt.% enhances the tensile strength while degrading the ductility. The mechanical properties and differential scanning calorimetry (DSC) behavior have been compared with that of the 63Sn-37Pb solder. Gallium lowers the melting point of the Sn-8.55Zn-0.5Ag-0.45Al-yGa solders. The Sn-8.55Zn-0.5Ag-0.45Al-0.5Ga solders exhibit greater tensile strength and better ductility than the 63Sn-37Pb solder.  相似文献   

16.
Tin (Sn)-rich lead (Pb)-free solders containing rare-earth (RE) elements have been shown to exhibit desirable attributes of microstructural refinement and enhanced ductility relative to conventional Sn-3.9Ag-0.7Cu lead-free solder, due to the unique mechanical properties of RE-Sn intermetallics. However, the roles of soft intermetallic phase in the enhanced ductility of Pb-free solder still need to be further investigated. In this paper, Ca and Mn were selected as doping elements for Sn-Ag-Cu solder. The mechanical properties of Ca-Sn and Mn-Sn intermetallics as a function of indentation depth were measured by nanoindentation using the continuous stiffness method (CSM). The microstructure and mechanical properties of as-reflowed Ca- and Mn-containing Sn-Ag-Cu solder joints were studied and compared with those of conventional Sn-Ag-Cu and RE-containing solder joints. It is shown that soft intermetallics result in higher ductility in Pb-free solders.  相似文献   

17.
The comparison study of Sn-10Bi and Sn-3.0Ag-0.5Cu solder alloys and joints was conducted. The results showed that the liquidus of Sn-10Bi solder alloy was lower than that of Sn-Ag-Cu slightly. The interfacial IMCs layer growth of Sn-10Bi/Cu was slower than that of Sn-Ag-Cu/Cu during liquid/solid reaction. The higher strength and lower creep strain rate of Sn-10Bi comparing with that of Sn-Ag-Cu were contributed by the solid solution strengthening effect of Bi atom in β-Sn phase. The ultimate bending load of Sn-10Bi joint was higher than that of Sn-Ag-Cu joint as the high strength of Sn-10Bi solder alloy. Moreover, the thinner and more flat IMCs layer also ensured the stable maximum bending displacement of Sn-10Bi joint at a loading speed of 1 mm/s compared with that of Sn-Ag-Cu joint.  相似文献   

18.
采用悬滴法测量了3种无铅钎料合金(Sn-3.0Ag-0.5Cu、Sn-0.7Cu与Sn-9.0Zn)在260℃时的表面张力,分别为525.5,534.8和595.4 mN/m;同时采用座滴法测量了其在260℃熔融状态下与Cu基板的接触角,分别为24.5°、28.0°和102.5°,并且与传统Sn-37.0Pb钎料进行了比较研究。结果表明,无铅钎料合金的表面张力与接触角均大于Sn-37.0Pb钎料。结合Young-Dupre公式讨论了钎料合金表面张力与其润湿性能的相关性,认为Sn基钎料合金在Cu基板上的润湿性能主要取决于其表面张力。  相似文献   

19.
The specific heat capacities (C p) of Sn-Zn-based solders and Sn-Ag-Cu solders have been studied using differential scanning calorimetry. The procedure of measuring the specific heat capacity followed the standard test method designed by the American Society for Testing and Materials (ASTM) E1269-05. The results of this work are lists of specific heat capacities of Sn-9Zn, Sn-9Zn-xAg (x = 0.1, 0.5, 1, 2, and 3), Sn-9Zn-0.5Ag-yAl (y = 0.1, 0.2, and 0.5), Sn-9Zn-0.5Ag-yGa (y = 0.1, 0.2, and 0.5), Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga, and Sn-zAg-0.5Cu (z = 1.0, 2.0, 3.0, and 3.5). The study also found that C p increased with increasing heating temperature. Furthermore, the lead-free solders investigated have a higher specific heat capacity than the traditional Sn-37Pb solder. Among the studied lead-free solders, Sn-3.5Ag-0.5Cu has the lowest C p and Sn-9Zn-0.1Ag has the highest C p. Increased silver content in the Sn-9Zn-xAg and Sn-xAg-0.5Cu solder alloys was also found to effectively lower their C p.  相似文献   

20.
The stress–strain properties of eutectic Sn-Pb and lead-free solders at strain rates between 0.1 s−1 and 300 s−1 are required to support finite-element modeling of the solder joints during board-level mechanical shock and product-level drop-impact testing. However, there is very limited data in this range because this is beyond the limit of conventional mechanical testing and below the limit of the split Hopkinson pressure bar test method. In this paper, a specialized drop-weight test was developed and, together with a conventional mechanical tester, the true stress–strain properties of four solder alloys (63Sn-37Pb, Sn-1.0Ag-0.1Cu, Sn-3.5Ag, and Sn-3.0Ag-0.5Cu) were generated for strain rates in the range from 0.005 s−1 to 300 s−1. The sensitivity of the solders was found to be independent of strain level but to increase with increased strain rate. The Sn-3.5Ag and the Sn-3.0Ag-0.5Cu solders exhibited not only higher flow stress at relatively low strain rate but, compared to Sn-37Pb, both also exhibited higher rate sensitivity that contributes to the weakness of these two lead-free solder joints when subjected to drop impact loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号