首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

3.
Electrically responsive ionic soft actuators that can exhibit large bending strain under low electrical input power are promising candidates for future soft electronics and wearable devices. However, some drawbacks such as low blocking force, slow response time, and poor durability should be overcome for practical engineering applications. Herein, this study reports defect‐engineered 3D graphitic carbon nitride (GCN) and nitrogen‐doped graphene (NG) hetero‐nanostructure that were developed by one‐pot hydrothermal method in order to design functionally antagonistic hybrid electrodes for superior ionic soft actuators. While NG facilitates rapid electron transfer in 3D networked nanoarchitectures, the enriched‐nitrogen content in GCN provides good wettability and mechanical resiliency with poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The 3D hybrid nanostructures generate unimpeded ion channels and sufficient contact area with the electrolyte membrane to provide higher capacitance and mechanical integrity, which are critical prerequisites for high‐performance actuation. The developed soft actuator based on the nitrogen‐enriched 3D hetero‐nanostructure is found to exhibit large bending strain (0.52%), wide frequency response, 5 h durability (93% retention), 2.4 times higher bending displacement, and twofold higher electromechanical efficiency compared to PEDOT:PSS under ±0.5 V input voltage. Such 3D functionally antagonistic hybrid electrodes offer hitherto unavailable opportunities in developing ultralow voltage‐driven ionic actuators for the next‐generation soft electronics.  相似文献   

4.
A novel hybrid electrocatalyst consisting of nitrogen‐doped graphene/cobalt‐embedded porous carbon polyhedron (N/Co‐doped PCP//NRGO) is prepared through simple pyrolysis of graphene oxide‐supported cobalt‐based zeolitic imidazolate‐frameworks. Remarkable features of the porous carbon structure, N/Co‐doping effect, introduction of NRGO, and good contact between N/Co‐doped PCP and NRGO result in a high catalytic efficiency. The hybrid shows excellent electrocatalytic activities and kinetics for oxygen reduction reaction in basic media, which compares favorably with those of the Pt/C catalyst, together with superior durability, a four‐electron pathway, and excellent methanol tolerance. The hybrid also exhibits superior performance for hydrogen evolution reaction, offering a low onset overpotential of 58 mV and a stable current density of 10 mA cm?2 at 229 mV in acid media, as well as good catalytic performance for oxygen evolution reaction (a small overpotential of 1.66 V for 10 mA cm?2 current density). The dual‐active‐site mechanism originating from synergic effects between N/Co‐doped PCP and NRGO is responsible for the excellent performance of the hybrid. This development offers an attractive catalyst material for large‐scale fuel cells and water splitting technologies.  相似文献   

5.
6.
7.
Future smart mobile electronics and wearable robotics that can perform delicate activities controlled by artificial intelligence can require rapid motion actuators working at low voltages with acceptable safety and improved energy efficiency. Accordingly, ionic soft actuators can have great potential over other counterparts because they exhibit gentle movements at low voltages, less than 2 V. However, these actuators currently show deficient performances at sub‐1 V voltages in the high‐frequency range because of the lack of electrode materials with the vital antagonistic properties of high capacitance and good conductivity. Herein, a mutually exclusive nanohybrid electrode (pMoS2‐nSNrGO) is reported consisting of oxide‐doped p‐type molybdenum‐disulfide and sulfur‐nitrogen‐codoped n‐type reduced‐graphene‐oxide. The pMoS2‐nSNrGO electrode derives high capacitance from MoS2 and good charge transfer between the two components from p‐n nano‐junctions, resulting in excellent actuation performances (670% improvement compared with rGO electrode at 0.5 V and 1 Hz, together with fast responses up to 15 Hz). With such excellent performances, these actuators can be successfully applied to realize an artificial soft robotic finger system for delicately touching the fragile surfaces of smartphones and tablets. The mutually exclusive pMoS2‐nSNrGO electrode can open a new way to develop high‐performance soft actuators for soft robotic applications in the future.  相似文献   

8.
Here, pyridinic nitrogen dominated graphene aerogels with/without iron incorporation (Fe‐NG and NG) are prepared via a facile and effective process including freeze‐drying of chemically reduced graphene oxide with/without iron precursor and thermal treatment in NH3. A high doping level of nitrogen has been achieved (up to 12.2 at% for NG and 11.3 at% for Fe‐NG) with striking enrichment of pyridinic nitrogen (up to 90.4% of the total nitrogen content for NG, and 82.4% for Fe‐NG). It is found that the Fe‐NG catalysts display a more positive onset potential, higher current density, and better four‐electron selectivity for ORR than their counterpart without iron incorporation. The most active Fe‐NG exhibits outstanding ORR catalytic activity, high durability, and methanol tolerance ability that are comparable to or even superior to those of the commercial Pt/C catalyst at the same catalyst loading in alkaline environment. The excellent ORR performance can be ascribed to the synergistic effect of pyridinic N and Fe‐N x sites (where iron probably coordinates with pyridinic N) that serve as active centers for ORR. Our Fe‐NG can be developed into cost‐effective and durable catalysts as viable replacements of the expensive Pt‐based catalysts in practical fuel cell applications.  相似文献   

9.
Solar‐to‐hydrogen (STH) conversion through unassisted artificial photosynthesis (APS) devices is one of the promising and environmentally friendly strategies for sustainable development. However, the practical large‐scale application of the unassisted APS devices is impeded by the need for expensive noble metal‐based catalysts in photovoltaics and/or electrolyzers. Herein, well‐aligned 2D NixSy nanowalls (2D NixSy NWs) on a 3D nitrogen‐doped graphene foam (3D NGF) are synthesized and further employed it in unassisted APS. Due to the positive synergistic effect between the highly electrocatalytic activity of NixSy NW and excellent conductivity of NGF, this low cost material of (2D/3D) NixSy NW/NGF is highly efficient as a multifunctional catalyst in various applications: a counterelectrode for dye‐sensitized solar cell (DSSC) and a “bifunctional” electrocatalyst for oxygen and hydrogen evolution for electrocatalytic overall water splitting. Furthermore, three NixSy NW/NGF‐based DSSCs as a tandem cell for unassisted solar‐driven overall water splitting is connected, using NixSy NW/NGF itself on nickel foams as the anode and cathode. Impressively, such integrated photovoltaic‐electrolyzer APS device can achieve an STH efficiency of 3.2% with an excellent stability and low cost. This work opens an avenue to advanced multifunctional materials for the low‐cost and unassisted solar‐driven overall water splitting.  相似文献   

10.
Three kinds of Mn3O4 nanoparticles with different shapes (spheres, cubes, and ellipsoids) are selectively grown on nitrogen‐doped graphene sheets through a two‐step liquid‐phase procedure. These non‐precious hybrid materials display an excellent ORR activity and good durability. The mesoporous microstructure, nitrogen doping, and strong bonding between metal species and doped graphene are found to facilitate the ORR catalytic process. Among these three kinds of Mn3O4 particles, the ellipsoidal particles on nitrogen‐doped graphene exhibit the highest ORR activity with a more positive onset‐potential of –0.13 V (close to that of Pt/C, –0.09 V) and a higher kinetic limiting current density (JK) of 11.69 mA cm–2 at –0.60 V. It is found that the ORR performance of hybrid materials can be correlated to the shape of Mn3O4 nanocrystals, and specifically to the exposed crystalline facets associated with a given shape. The shape dependence of Mn3O4 nanoparticles integrated with nitrogen‐doped graphene on the ORR performance, reported here for the first time, may advance the development of fuel cells and metal‐air batteries.  相似文献   

11.
Taking advantage of the self‐assembling function of amino acids, cobalt–alanine complexes are synthesized by straightforward process of chemical precipitation. Through a controllable calcination of the cobalt–alanine complexes, N‐doped Co3O4 nanostructures (N‐Co3O4) and N‐doped CoO composites with amorphous carbon (N‐CoO/C) are obtained. These N‐doped cobalt oxide materials with novel porous nanostructures and minimal oxygen vacancies show a high and stable activity for the oxygen evolution reaction. Moreover, the influence of calcination temperature, electrolyte concentration, and electrode substrate to the reaction are compared and analyzed. The results of experiments and density functional theory calculations demonstrate that N‐doping promotes the catalytic activity through improving electronic conductivity, increasing OH? adsorption strength, and accelerating reaction kinetics. Using a simple synthetic strategy, N‐Co3O4 reserves the structural advantages of micro/nanostructured complexes, showing exciting potential as a catalyst for the oxygen evolution reaction with good stability.  相似文献   

12.
A hierarchical N‐doped carbon nanotube‐graphene hybrid nanostructure (NCNT‐GHN), in which the graphene layers are distributed inside the CNT inner cavities, was designed to efficiently support noble metal (e.g., PtRu) nanoparticles. Well‐dispersed PtRu nanoparticles with diameters of 2–4 nm were immobilized onto these NCNT‐GHN supports by a low‐temperature chemical reduction method without any pretreatment. Compared to conventional CNTs and commercial catalysts. a much better catalytic performance was achieved by a synergistic effect of the hierarchical structure (graphene‐CNT hybrid) and electronic modulation (N‐doping) during the methanol electrooxidation reaction. Improved single‐cell performances with long‐term stability are also demonstrated using NCNT‐GHN as catalyst support.  相似文献   

13.
Potassium‐ion hybrid capacitors (PIHCs) shrewdly combine a battery‐type anode and a capacitor‐type cathode, exhibiting an energy density close to that of potassium ion batteries and a comparable power density of supercapacitors. However, the rosy scenario is compromised by the sluggish kinetics in the PIHCs device. Herein, the kinetics enhanced nitrogen‐doped hierarchical porous hollow carbon spheres (NHCS) are synthesized and successfully applied to PIHCs. As for the K half‐cell, NHCS anchored with sodium alginate delivers excellent electrochemical performance. Further evaluation shows that the binder can significantly affect the potassium storage performance of NHCS by adjusting the coatability and ionic conductivity of the NHCS anode. Moreover, kinetic analysis and density functional theory calculations reveal the origin of the superior electrochemical properties of NHCS. As expected, an advanced PIHC device is assembled with a NHCS anode and an activated NHCS cathode, demonstrating an exceptionally high energy/power density (114.2 Wh kg?1 and 8203 W kg?1), along with a long‐life capability. The successful construction of high‐performance PIHCs in this work opens a new avenue for the development and application of PIHCs in the future.  相似文献   

14.
A novel synthesis procedure is devised to obtain nitrogen‐doping in hydrogen‐exfoliated graphene (HEG) sheets. An anionic polyelectrolyte–conducting polymer duo is used to form a uniform coating of the polymer over graphene sheets. Pyrolysis of graphene coated with polypyrrole, a nitrogen‐containing polymer, in an inert environment leads to the incorporation of nitrogen atoms in the graphene network with simultaneous removal of the polymer. These nitrogen‐doped graphene (N‐HEG) sheets are used as catalyst support for dispersing platinum and platinum–cobalt alloy nanoparticles synthesized by the modified‐polyol reduction method, yielding a uniform dispersion of the catalyst nanoparticles. Compared to commercial Pt/C electrocatalyst, Pt–Co/N‐HEG cathode electrocatalyst exhibits four times higher power density in proton exchange membrane fuel cells, which is attributed to the excellent dispersion of Pt–Co alloy nanoparticles on the N‐HEG support, the alloying effect of Pt–Co, and the high electrocatalytic activity of the N‐HEG support. A stability study shows that Pt/N‐HEG and Pt–Co/N‐HEG cathode electrocatalysts are highly stable in acidic media. The study shows two promising electrocatalysts for proton exchange membrane fuel cells, which on the basis of performance and stability present the possibility of replacing contemporary electrocatalysts.  相似文献   

15.
Engineering of controlled hybrid nanocomposites creates one of the most exciting applications in the fields of energy materials and environmental science. The rational design and in situ synthesis of hierarchical porous nanocomposite sheets of nitrogen‐doped graphene oxide (NGO) and nickel sulfide (Ni7S6) derived from a hybrid of a well‐known nickel‐based metal‐organic framework (NiMOF‐74) using thiourea as a sulfur source are reported here. The nanoporous NGO/MOF composite is prepared through a solvothermal process in which Ni(II) metal centers of the MOF structure are chelated with nitrogen and oxygen functional groups of NGO. NGO/Ni7S6 exhibits bifunctional activity, capable of catalyzing both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with excellent stability in alkaline electrolytes, due to its high surface area, high pore volume, and tailored reaction interface enabling the availability of active nickel sites, mass transport, and gas release. Depending on the nitrogen doping level, the properties of graphene oxide can be tuned toward, e.g., enhanced stability of the composite compared to commonly used RuO2 under OER conditions. Hence, this work opens the door for the development of effective OER/HER electrocatalysts based on hierarchical porous graphene oxide composites with metal chalcogenides, which may replace expensive commercial catalysts such as RuO2 and IrO2.  相似文献   

16.
Nitrogen‐doped carbon materials are proposed as promising electrocatalysts for the carbon dioxide reduction reaction (CRR), which is essential for renewable energy conversion and environmental remediation. Unfortunately, the unclear cognition on the CRR active site (or sites) hinders further development of high‐performance electrocatalysts. Herein, a series of 3D nitrogen‐doped graphene nanoribbon networks (N‐GRW) with tunable nitrogen dopants are designed to unravel the site‐dependent CRR activity/selectivity. The N‐GRW catalyst exhibits superior CO2 electrochemical reduction activity, reaching a specific current of 15.4 A gcatalyst?1 with CO Faradaic efficiency of 87.6% at a mild overpotential of 0.49 V. Based on X‐ray photoelectron spectroscopy measurements, it is experimentally demonstrated that the pyridinic N site in N‐GRW serves as the active site for CRR. In addition, the Gibbs free energy calculated by density functional theory further illustrates the pyridinic N as a more favorable site for the CO2 adsorption, *COOH formation, and *CO removal in CO2 reduction.  相似文献   

17.
Orthorhombic Nb2O5 (T‐Nb2O5) has recently attracted great attention for its application as an anode for sodium ion batteries (NIBs) owing to its patulous framework and larger interplanar lattice spacing. Sulfur‐doped T‐Nb2O5 hollow nanospheres (diameter:180 nm) uniformly encapsulate into sulfur‐doped graphene networks (denoted: S‐Nb2O5 HNS@S‐rGO) using hard template method. The 3D ordered porous structure not only provides good electronic transportation path but also offers outstanding ionic conductive channels, leading to an improved sodium storage performance. In addition, the introduction of sulfur to graphene and Nb2O5 leads to oxygen vacancy and enhanced electronic conductivity. The sodium storage performance of S‐Nb2O5 HNS@S‐rGO is unprecedented. It delivers a reversible capacity 215 mAh g?1 at 0.5 C over 100 cycles. In addition, it also possesses a great high‐rate capability, retaining a stable capacity of 100 mAh g?1 at 20 C after 3000 cycles. This design demonstrates the potential applications of Nb2O5 as anode for high performance NIBs.  相似文献   

18.
The construction of a novel 3D self‐supported integrated NixCo2?xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2?xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2?xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm?2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm?2 and 305 mV at 50 mA cm?2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm?2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm?2 with a negligible degradation in current density over 22 h in both acidic and alkaline media.  相似文献   

19.
The performance of graphene‐based hybrid materials greatly depends on the dispersibility of nanoscale building blocks on graphene sheets. Here, a quick green synthesis of nanoscale graphene (NG) nanosheets decorated with highly dispersed silver nanoparticles (AgNPs) is demonstrated, and then the electrospinning technique to fabricate a novel nanofibrous membrane electrode material is utilized. With this technique, the structure, mechanical stability, biochemical functionality, and other properties of the fabricated membrane electrode material can be easily controlled. It is found that the orientations of NG and the dispersity of AgNPs on the surface of NG have significant effects on the properties of the fabricated electrode. A highly sensitive H2O2 biosensor is thus created based on the as‐prepared polymeric NG/AgNP 3D nanofibrous membrane‐modified electrode (MME). As a result, the fabricated biosensor has a linear detection range from 0.005 to 47 × 10?3m (R = 0.9991) with a supralow detection limit of 0.56 × 10?6m (S/N = 3). It is expected that this kind of nanofibrous MME has wider applications for the electrochemical detection and design of 3D functional nanomaterials in the future.  相似文献   

20.
As one important component of sulfur cathodes, the carbon host plays a key role in the electrochemical performance of lithium‐sulfur (Li‐S) batteries. In this paper, a mesoporous nitrogen‐doped carbon (MPNC)‐sulfur nanocomposite is reported as a novel cathode for advanced Li‐S batteries. The nitrogen doping in the MPNC material can effectively promote chemical adsorption between sulfur atoms and oxygen functional groups on the carbon, as verified by X‐ray absorption near edge structure spectroscopy, and the mechanism by which nitrogen enables the behavior is further revealed by density functional theory calculations. Based on the advantages of the porous structure and nitrogen doping, the MPNC‐sulfur cathodes show excellent cycling stability (95% retention within 100 cycles) at a high current density of 0.7 mAh cm‐2 with a high sulfur loading (4.2 mg S cm‐2) and a sulfur content (70 wt%). A high areal capacity (≈3.3 mAh cm‐2) is demonstrated by using the novel cathode, which is crucial for the practical application of Li‐S batteries. It is believed that the important role of nitrogen doping promoted chemical adsorption can be extended for development of other high performance carbon‐sulfur composite cathodes for Li‐S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号