首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A chemically stable and highly proton‐conductive electrolyte is developed by partially substituting the Zr site of Y‐doped barium zirconate (BZY) with 10 mol% of Pr. Compared to BZY, BaZr0.7Pr0.1Y0.2O3‐δ (BZPY) shows improved sinterability as revealed by dilatometric measurements and scanning electron microscopy (SEM) analysis. Dense samples are obtained after sintering at 1500?C for 8 h. Moreover, BZPY shows good chemical stability in the wide range of fuel‐cell operating conditions. The larger density and the enhanced grain growth, compared to BZY, allow the volume content of grain boundaries, which generally show a high resistance for proton transport, to be reduced and, thus, a high proton conductivity can be achieved in the temperature range of interest for practical applications (above 10?2 Scm?1 at 600?C). The good sinterability, chemical stability, and high conductivity of the BZPY electrolyte enabled the fabrication of single‐cell prototypes based on a thin BZPY membrane by a simple and cost‐saving co‐pressing method. Electrochemical impedance spectroscopy (EIS) analysis performed during fuel‐cell tests under open‐circuit conditions confirms the good electrical performance of BZPY as electrolyte material. To improve the present fuel‐cell performance adapted cathode materials for this BZPY electrolyte need to be developed.  相似文献   

2.
The proton uptake of 18 compositions in the perovskite family (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ, perovskites, which are potential cathode materials for protonic ceramic fuel cells (PCFCs), is investigated by thermogravimetry. Hydration enthalpies and entropies are derived, and the doping trends are explored. The uptake is found to be largely determined by the basicity of the oxide ions. Partial substitution of Zn on the B‐site strongly enhances proton uptake, while Co substitution has the opposite effect. The proton concentration in Ba0.95La0.05Fe0.8Zn0.2O3‐δ is found to be 10% per formula unit at 250 °C, 5.5% at 400 °C, and 2.3% at 500 °C, which are the highest values reported so far for a mixed‐conducting perovskite exhibiting hole, proton, and oxygen vacancy transport. A comprehensive set of thermodynamic data for proton uptake in (Ba,Sr,La)(Fe,Co,Zn,Y)O3‐δ is determined. Defect interactions between protons and holes partially delocalized from the B‐site transition metal to the adjacent oxide ions decrease the proton uptake. From these results, guidelines for the optimization of PCFC cathode materials are derived.  相似文献   

3.
The La1–xCaxFe0.8Ni0.2O3–δ (0 ≤ x ≤ 0.9) system is investigated for potential application as a cathode material for intermediate temperature solid oxide fuel cells (IT‐SOFCs). A broad range of experimental techniques have been utilized in order to elucidate the characteristics of the entire compositional range. Low A‐site Ca content compositions (x ≤ 0.4) feature a single perovskite solid solution. Compositions with 40% Ca content (x = 0.4) exhibit the highest electrical and ionic conductivities of these single phase materials (250 and 1.9 × 10?3 S cm?1 at 800 °C, respectively), a level competitive with state‐of‐the‐art (La,Sr)(Fe,Co)O3. Between 40 and 50% Ca content (0.4 > x > 0.5) a solubility limit is reached and a secondary, brownmillerite‐type phase appears for all higher Ca content compositions (0.5 ≤ x ≤ 0.9). While typically seen as detrimental to electrochemical performance in cathode materials, this phase brings with it ionic conductivity at operational temperatures. This gives rise to the effective formation of pseudo‐composite materials which feature significantly enhanced performance characteristics, while also providing the closest match in thermal expansion behavior to typical electrolyte materials. This all comes with the advantage of being produced through a simple, single‐step, low‐cost production route without the issues associated with typical composite materials. The highest performing pseudo‐composite material (x = 0.5) exhibits electronic conductivity of 300–350 S cm?1 in the 600–800 °C temperature range while the best polarisation resistance (Rp) values of approximately 0.2 Ω cm2 are found in the 0.5 ≤ x ≤ 0.7 range.  相似文献   

4.
The efficiencies of a number of electrochemical devices (e.g., fuel cells and metal‐air batteries) are mainly governed by the kinetics of the oxygen reduction reaction (ORR). Among all the good ORR catalysts, the partially substituted double perovskite oxide (AA′B2O5+δ) has the unique layered structure, providing a great flexibility regarding the optimization of its electronic structures and physicochemical properties. Here, it is demonstrated that the double perovskite oxide, i.e., NdBa0.75Ca0.25Co1.5Fe0.5O5+δ, is a good ORR catalyst at both room and elevated temperatures. Under ambient condition, its half‐wave potential of ORR in alkaline media is as low as 0.74 V versus RHE; at 650 °C, the cathodic polarization resistance is merely 0.0276 Ω cm2 according to a symmetric cell measurement, whereas the solid oxide fuel cells using this cathode exhibit a maximum power density of 1982 mW cm?2. From various materials characterizations, it is hypothesized that its excellent ORR activity is strongly correlated with the crystallographic, electronic, and defect structures of the materials.  相似文献   

5.
Surface stabilization of cathode materials is urgent for guaranteeing long‐term cyclability, and is important in Na cells where a corrosive Na‐based electrolyte is used. The surface of P2‐type layered Na2/3[Ni1/3Mn2/3]O2 is modified with ionic, conducting sodium phosphate (NaPO3) nanolayers, ≈10 nm in thickness, via melt‐impregnation at 300 °C; the nanolayers are autogenously formed from the reaction of NH4H2PO4 with surface sodium residues. Although the material suffers from a large anisotropic change in the c‐axis due to transformation from the P2 to O2 phase above 4 V versus Na+/Na, the NaPO3‐coated Na2/3[Ni1/3Mn2/3]O2/hard carbon full cell exhibits excellent capacity retention for 300 cycles, with 73% retention. The surface NaPO3 nanolayers positively impact the cell performance by scavenging HF and H2O in the electrolyte, leading to less formation of byproducts on the surface of the cathodes, which lowers the cell resistance, as evidenced by X‐ray photoelectron spectroscopy and time‐of‐flight secondary‐ion mass spectroscopy. Time‐resolved in situ high‐temperature X‐ray diffraction study reveals that the NaPO3 coating layer is delayed for decomposition to Mn3O4, thereby suppressing oxygen release in the highly desodiated state, enabling delay of exothermic decomposition. The findings presented herein are applicable to the development of high‐voltage cathode materials for sodium batteries.  相似文献   

6.
Direct carbon fuel cells (DCFCs) are an efficient energy‐conversion technology capable of generating electricity with carbon‐dioxide‐capture chemistry with solid carbon as fuels. The efficiency and performance of DCFCs depend on the kinetics of the carbon oxidation reactions (COR) and the oxygen reduction reactions (ORR), each occurring at anode and cathode, respectively. The limited active sites paired with reduced temperatures greatly decrease the efficiency of the electrochemical reactions. Ultraporous dual‐3D ceramic textiles (dual‐3DCT) are integrated into electrolyte‐supported DCFCs to enhance charge and mass transfer at the electrodes. Improved COR at the anode is achieved by the synergy between the 3DCT NiO–Ce0.8Gd0.2O1.95 (GDC) structure and optimal carbon fuel choice. In a comparative study, DCFCs using graphitic carbon (GC) as fuel show the best COR performance when compared to DCFCs utilizing alternative fuels such as carbon black (CB) and activated carbon (AC). The 3DCT Sm0.5Sr0.5CoO3‐δ–GDC (SSC–GDC) composite cathode shows electrochemical performance superior to that of the conventional screen‐printed SSC–GDC. A peak power density of 392 mW cm?2 at 600 °C is obtained in a DCFC using the 3DCT‐anode/electrolyte/3DCT‐cathode configuration, an unprecedented value for any reported DCFC as of yet. This points toward promising applications of dual‐3DCT electrodes for reduced‐temperature DCFCs.  相似文献   

7.
Solid oxide fuel cell (SOFC) is regarded as an environmentally friendly energy conversion device, which can directly convert the chemical energy stored in the fuel to the electrical energy. However, the degradation of cathodes caused by Cr-containing steel interconnects is a major problem that limits the broader application of SOFC. Herein, a novel A-site high entropy oxide, based on the cobalt-free PrBaFe2O5+δ (PBF) cathode, La0.2Pr0.2Nd0.2Sm0.2Gd0.2BaFe2O5+δ (LPNSGBF), is proposed as a high catalyst activity and Cr-tolerance cathode for SOFC. The anode-supported cell with the LPNSGBF cathode exhibits an excellent peak power density of 1020.69 mW cm−2 at 800 °C, which is better than that of the PBF (794.96 mW cm−2). Moreover, under the Cr-containing atmosphere, the outstanding stability of the single cell with the LPNSGBF for 100 h with a degradation rate of 0.17% h−1, is much lower than the 0.79% h−1 for that of the PBF cathode. The study provides a new strategy for achieving the enhanced oxygen reduction reaction and high Cr-tolerance of the cobalt-free cathode by high entropy doping.  相似文献   

8.
Yttrium and indium co‐doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2‐xInxO3‐ δ possesses a pure cubic perovskite structure. The sintering activity of BaZr0.8Y0.2‐xInxO3‐ δ increases significantly with In concentration. BaZr0.8Y0.15In0.05O3‐ δ (BZYI5) exhibits the highest total electrical conductivity among the sintered oxides. BZYI5 also retains high chemical stability against CO2, vapor, and reduction of H2. The good sintering activity, high conductivity, and chemical stability of BZYI5 facilitate the fabrication of durable SOFCs based on a highly conductive BZYI5 electrolyte film by cost‐effective ceramic processes. Fully dense BZYI5 electrolyte film is successfully prepared on the anode substrate by a facile drop‐coating technique followed by co‐firing at 1400 °C for 5 h in air. The BZYI5 film exhibits one of the highest conductivity among the BaZrO3‐based electrolyte films with various sintering aids. BZYI5‐based single cells output very encouraging and by far the highest peak power density for BaZrO3‐based proton‐conducting SOFCs, reaching as high as 379 mW cm?2 at 700 °C. The results demonstrate that Y and In co‐doping is an effective strategy for exploring sintering active and chemically stable BaZrO3‐based proton conductors for high performance proton‐conducting SOFCs.  相似文献   

9.
Non‐precious metal catalysts of the oxygen reduction reaction are highly favored for use in polymer electrolyte fuel cells (PEFC) because of their relatively low cost. Here, a new carbon‐black‐supported pyrolyzed Co‐corrole (py‐Co‐corrole/C) catalyst of the oxygen reduction reaction (ORR) in a PEFC cathode is demonstrated to have high catalytic performance. The py‐Co‐corrole/C at 700 °C exhibits optimized ORR activity and participates in a direct four‐electron reduction pathway for the reduction of O2 to H2O. The H2‐O2 PEFC test of py‐Co‐corrole/C in the cathode reveals a maximum power density of 275 mW cm?2, which yields a higher performance and a lower Co loading than previous studies of Co‐based catalysts for PEFCs. The enhancement of the ORR activity of py‐Co‐corrole/C is attributable to the four‐coordinated Co‐corrole structure and the oxidation state of the central cobalt.  相似文献   

10.
A thin layer of a vertically aligned nanocomposite (VAN) structure is deposited between the electrolyte, Ce0.9Gd0.1O1.95 (CGO), and the thin‐film cathode layer, La0.5Sr0.5CoO3 (LSCO), of a thin‐film solid‐oxide fuel cell (TFSOFC). The self‐assembled VAN nanostructure contains highly ordered alternating vertical columns of CGO and LSCO formed through a one‐step thin‐film deposition process that uses pulsed laser deposition. The VAN structure significantly improves the overall performance of the TFSOFC by increasing the interfacial area between the electrolyte and cathode. Low cathode polarization resistances of 9 × 10?4 and 2.39 Ω were measured for the cells with the VAN interlayer at 600 and 400 °C, respectively. Furthermore, anode‐supported single cells with LSCO/CGO VAN interlayer demonstrate maximum power densities of 329, 546, 718, and 812 mW cm?2 at 550, 600, 650, and 700 °C, respectively, with an open‐circuit voltage (OCV) of 1.13 V at 550 °C. The cells with the interlayer triple the overall power output at 650 °C compared to that achieved with the cells without an interlayer. The binary VAN interlayer could also act as a transition layer that improves adhesion and relieves both thermal stress and lattice strain between the cathode and the electrolyte.  相似文献   

11.
Intermediate temperature solid oxide fuel cells (IT-SOFCs) are cost-effective and efficient energy conversion systems. The sluggish oxygen reduction reaction (ORR) and the degradation of cathodes are critical challenges to the commercialization of IT-SOFCs. Here, a highly efficient multiphase (MP) catalyst coating, consisting of Ba1−xCo0.7Fe0.2Nb0.1O3−δ (BCFN) and BaCO3, to enhance the ORR activity and durability of the state-of-the-art lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3−δ, LSCF) cathode is reported. The conformal MP catalyst-coated LSCF cathode shows a polarization resistance (Rp) of 0.048 Ω cm2 at 650 °C, about one order of magnitude smaller than that of the bare LSCF. In an accelerated Cr-poisoning test, the degradation rate of the catalyst-coated LSCF electrode is 10−3 Ω cm2 h−1 (0.59% h−1) over 200 h, only one fifth of the degradation rate of the bare LSCF electrode at 750 °C. In addition, anode-supported single cells with the MP catalyst-coated LSCF cathode show a dramatically enhanced peak power density (1.4 W cm−2 vs 0.67 W cm−2 at 750 °C) and increased durability against Cr and H2O. Both experimental results and density functional theory-based calculations indicate that the BCFN phase improves the ORR activity while the BaCO3 phase enhances the stability of the LSCF cathode.  相似文献   

12.
Solid oxide fuel cells (SOFCs) with thin (La0.9Sr0.1)0.98Ga0.8Mg0.2O3‐δ (LSGM) electrolytes are primary candidates for achieving high (> 1 W cm‐2) power density at intermediate (< 650 °C) temperatures. Although high power density LSGM‐electrolyte SOFCs have been reported, it is still necessary to develop a fabrication process suitable for large‐scale manufacturing and to minimize the amount of LSGM used. Here we show that SOFCs made with a novel processing method and a Sr0.8La0.2TiO3‐ α (SLT) oxide support can achieve high power density at intermediate temperature. The SLT support is advantageous, especially compared to LSGM supports, because of its low materials cost, electronic conductivity, and good mechanical strength. The novel process is to first co‐fire the ceramic layers – porous SLT support, porous LSGM layer, and dense LSGM layer – followed by infiltration of nano‐scale Ni into the porous layers. Low polarization resistance of 0.188 Ωcm2 was achieved at 650 °C for a cell with an optimized anode functional layer (AFL) and an (La,Sr)(Fe,Co)O3 cathode. Maximum power density reached 1.12 W cm?2 at 650 °C, limited primarily by cathode polarization and ohmic resistances, so there is considerable potential to further improve the power density.  相似文献   

13.
High capacity electrodes based on a Si composite anode and a layered composite oxide cathode, Ni‐rich Li[Ni0.75Co0.1Mn0.15]O2, are evaluated and combined to fabricate a high energy lithium ion battery. The Si composite anode, Si/C‐IWGS (internally wired with graphene sheets), is prepared by a scalable sol–gel process. The Si/C‐IWGS anode delivers a high capacity of >800 mAh g?1 with an excellent cycling stability of up to 200 cycles, mainly due to the small amount of graphene (~6 wt%). The cathode (Li[Ni0.75Co0.1Mn0.15]O2) is structurally optimized (Ni‐rich core and a Ni‐depleted shell with a continuous concentration gradient between the core and shell, i.e., a full concentration gradient, FCG, cathode) so as to deliver a high capacity (>200 mAh g?1) with excellent stability at high voltage (~4.3 V). A novel lithium ion battery system based on the Si/C‐IWGS anode and FCG cathode successfully demonstrates a high energy density (240 Wh kg?1 at least) as well as an unprecedented excellent cycling stability of up to 750 cycles between 2.7 and 4.2 V at 1C. As a result, the novel battery system is an attractive candidate for energy storage applications demanding a high energy density and long cycle life.  相似文献   

14.
Nafion–carbon (NC) composite membranes were prepared by hydrothermal treatment of Nafion membrane impregnated with glucose solution. The carbon loading of the NC membrane was tuned by controlling the hydrothermal carbonization time. X‐ray diffraction, Fourier‐transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and positron annihilation lifetime spectroscopy were used to characterize plain Nafion and NC composite membranes. Nafion–carbon composite membranes exhibited better proton conductivity and reduced methanol permeability than those of the plain Nafion membrane. A single cell prepared with the NC composite membrane with a carbon loading of 3.6 wt% exhibited the highest cell performance. Compared with the cell performance of plain Nafion membrane, the maximum power density of the new cell improved by 31.7% for an H2/O2 fuel cell at room temperature, and by 44.0% for a direct methanol fuel cell at 60 °C.  相似文献   

15.
Reversible solid oxide cells based on ceramic proton conductors have potential to be the most efficient system for large‐scale energy storage. The performance and long‐term durability of these systems, however, are often limited by the ionic conductivity or stability of the proton‐conducting electrolyte. Here new family of solid oxide electrolytes, BaHfxCe0.8?xY0.1Yb0.1O3?δ (BHCYYb), which demonstrate a superior ionic conductivity to stability trade‐off than the state‐of‐the‐art proton conductors, BaZrxCe0.8?xY0.1Yb0.1O3?δ (BZCYYb), at similar Zr/Hf concentrations, as confirmed by thermogravimetric analysis, Raman, and X‐ray diffraction analysis of samples over 500 h of testing are reported. The increase in performance is revealed through thermodynamic arguments and first‐principle calculations. In addition, lab scale full cells are fabricated, demonstrating high peak power densities of 1.1, 1.4, and 1.6 W cm?2 at 600, 650, and 700 °C, respectively. Round‐trip efficiencies for steam electrolysis at 1 A cm?2 are 78%, 72%, and 62% at 700, 650, and 600 °C, respectively. Finally, CO2? H2O electrolysis is carried out for over 700 h with no degradation.  相似文献   

16.
We present a planar micro-direct methanol fuel cell (μ-DMFC) fabricated by rapid prototyping-powder blasting technology. Using an elastomeric mask, we pattern two parallel microfluidic channels in glass. The anode and cathode of the fuel cell are formed by wet spraying Pt-Ru/C and Pt/C catalysts, respectively, onto Au electrodes that are evaporated in the microchannels. Simply clamping a Nafion 117 proton exchange membrane (PEM) using a glass substrate covered with PDMS membrane onto the microchannels completes the fuel cell fabrication. Our μ-DMFC generates a voltage of 0.45 V and can deliver a power up to 0.5 mW/cm2 by using 1 M CH3OH in 0.5 M H2SO4 solution as fuel in the anodic channel, and 0.01 M H2O2 in 0.5 M H2SO4 as oxidant solution in the cathodic channel.  相似文献   

17.
High activity, carbon supported Pt electrocatalysts were synthesized using a supercritical fluid method and a selective heterogeneous nucleation reaction to disperse Pt onto single walled carbon nanotube and carbon fiber supports. These nanocomposite materials were then incorporated into catalyst and gas diffusion layers consisting of polyelectrolytes, i.e., Nafion, polyaniline, and polyethyleneimine using layer‐by‐layer (LBL) assembly techniques. Due to the ultrathin nature and excellent homogeneity characteristics of LBL materials, the LBL nanocomposite catalyst layers (LNCLs) yielded much higher Pt utilizations, 3,198 mW mgPt?1, than membrane electrode assemblies produced using conventional methods (~800 mW mgPt?1). Thinner membranes (100 bilayers) can further improve the performance of the LNCLs and these layers can function as catalyzed gas diffusion layers for the anode and cathode of a polymer electrolyte membrane fuel cell.  相似文献   

18.
Organolead halide perovskite solar cells (PSC) are arising as promising candidates for next‐generation renewable energy conversion devices. Currently, inverted PSCs typically employ expensive organic semiconductor as electron transport material and thermally deposited metal as cathode (such as Ag, Au, or Al), which are incompatible with their large‐scale production. Moreover, the use of metal cathode also limits the long‐term device stability under normal operation conditions. Herein, a novel inverted PSC employs a SnO2‐coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates (substrate/NiO‐perovskite/Al2O3‐perovskite/SnO2@CSCNT‐perovskite). Inverted PSCs with SnO2@CSCNT cathode exhibit considerable enhancement in photovoltaic performance in comparison with the devices without SnO2 coating owing to the significantly reduced charge recombination. As a result, a power conversion efficiency of 14.3% can be obtained on rigid substrates while the flexible ones achieve 10.5% efficiency. More importantly, SnO2@CSCNT‐based inverted PSCs exhibit significantly improved stability compared to the standard inverted devices made with silver cathode, retaining over 88% of their original efficiencies after 550 h of full light soaking or thermal stress. The results indicate that SnO2@CSCNT is a promising cathode material for long‐term device operation and pave the way toward realistic commercialization of flexible PSCs.  相似文献   

19.
Although the peak power density of anion exchange membrane fuel cells (AEMFCs) has been raised from ≈0.1 to ≈1.4 W cm?2 over the last decade, a majority of AEMFCs reported in the literature have not been demonstrated to achieve consistently high performance and steady‐state operation. Poly(olefin)‐based AEMs with fluorine substitution on the aromatic comonomer show considerably higher dimensional stability compared to samples that do not contain fluorine. More importantly, fluorinated poly(olefin)‐based AEMs exhibit high hydroxide conductivity without excessive hydration due to a new proposed mechanism where the fluorinated dipolar monomer facilitates increased hydroxide dissociation and transport. Using this new generation of AEMs, a stable, high‐performance AEMFC is operated for 120 h. When the fuel cell configuration is subjected to a constant current density of 600 mA cm?2 under H2/O2 flow, the cell voltage declines only 11% (from 0.75 to 0.67 V) for the first 20 h during break‐in and the cell voltage loss is low (0.2 mV h?1) over the subsequent 100 h of cell testing. The ease of synthesis, potential for low‐cost commercialization, and remarkable ex situ properties and in situ performance of fluoropoly(olefin)‐based AEM renders this material a benchmark membrane for practical AEMFC applications.  相似文献   

20.
Aprotic Li–O2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li2O2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li2O2 particles and facilitate their decomposition due to the confinement of insulating Li2O2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg?1cell. This study provides an effective approach to increase the practical specific energy for Li–O2 batteries by constructing 3D‐printed framework cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号