首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
利用偏振激光雷达对南京2015年3月一次沙尘和细粒子污染共存过程的颗粒物垂直分布特征进行观测研究,结合地面气象数据、PM2.5和PM10质量浓度数据、PM2.5组分数据、卫星MODIS测量结果,探讨不同颗粒形态下的气象因素、颗粒物浓度分布、组分特征以及颗粒物光学特性的时间演变和垂直分布特征.结果表明:高湿、弱风等不利气象条件利于二次粒子的生成和累积,期间水溶性组分中SNA(SO42-、NO3-、NH4+)等二次组分浓度明显升高;同一时期长距离输入的沙尘发生的沉降对地面PM2.5化学组分构成显著影响,3月21日下午时段至3月22日在1.12.5 km高度的沙尘颗粒物向地面输送造成地面PM2.5的Ca2+突然增大到3.2μg/m3;3月22日下午以后在东南气流影响下,地面PM2.5向西扩散,PM2.5颗粒物浓度得到有效稀释,同时段出现了沙尘输入和扬尘过程,扬尘过程和沙尘输入使地面的粗颗粒增多,PM10剧增至347μg/m3;南京与无锡地区的颗粒物时空分布呈现高度相似的变化特点,具有区域性分布特征.后向轨迹分析表明,500 m、800 m及1000 m三个高度气团移动方向基本一致,主要从内蒙、京津冀、山东等地入海,后又经东海返回内陆抵达南京.  相似文献   

2.
为了初步探究淮南地区大气SO2及NO2的不同时空分布特征,采用自研的差分吸收激光雷达系统测得某地(淮南地区)部分月份大气SO2及NO2气体浓度分布廓线,并选取其中典型实例从气体水平浓度日变化、垂直浓度变化以及水平浓度月变化3个方面分析了SO2及NO2分布特点。结果表明,同一天夜晚时刻,SO2及NO2气体浓度大于下午时刻的气体浓度;SO2及NO2气体垂直浓度随高度增加呈递减趋势;SO2及NO2气体水平浓度月变化变现为冬季月份气体浓度最大,夏季月份气体浓度最小,春、秋季月份次之。SO2及NO2浓度变化特征是人群活动和气象条件变化共同作用的结果。  相似文献   

3.
贵州省属于典型的喀斯特山区,受地势和气候影响,省内不同区域污染气体浓度具有明显的时空差异。因此,利用交互式数据语言(IDL)+遥感图像处理平台ENVI、地理信息系统软件Arc GIS等,基于臭氧层监测仪(OMI)的L3 V003柱浓度数据和地面环境监测站数据,从时间和空间两个方面在区域尺度上评估分析了贵州省3种主要污染气体的浓度变化差异和时空演变特征。结果表明:(1) 2019年,贵州省二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)柱浓度较2005年呈下降趋势,且两种方法监测的NO2、SO2季节特征均表现为“秋冬高、春夏低”,受太阳辐射和天气过程影响,两种方法监测的O3均表现为“春夏高、秋冬低”的季节特征;(2)对比分析表明,遥感方法反演的NO2柱浓度极大值和SO2柱浓度极小值较地面监测结果在时间上存在滞后性,但滞后时间较短,没有出现跨季节差异,总体上空间差异性大于时间差异性,且SO2...  相似文献   

4.
利用OMI(Ozone Monitoring Instrument)NO2 2级数据产品通过采用面积权重得到OMI NO2对流层柱浓度网格化分布,研究了中部地区3个代表性区域(工业集中区域,黄河流域,以及农业区域)20072014年NO2柱浓度时空分布特征.结果表明,NO2对流层柱浓度年均值在2009年最小,2013年最大,2014年相对2013年降低大于25%.同时分析了典型时间段(中国农历新年2月以及秸秆焚烧6月)内3个区域NO2柱浓度变化特征,2月期间3个区域柱浓度都有不同程度的下降,6月农业区NO2柱浓度上升约80%.NO2柱浓度相对变化率进一步反映了3个区域NO2柱浓度近8年内的变化特征,2008年年中至2009年年中工业区域以及沿河流域NO2柱浓度相对往年同期都有高于15%的下降而农业区没有体现,但2014年以后3个区域NO2柱浓度都出现明显下降,下降比例都在20%以上.  相似文献   

5.
介绍了基于中红外吸收光谱的高温条件下SO2和SO3同步测量技术。在该测量实验系统中,SO3由SO2与O2在钒基催化剂作用下高温反应得到,并且在SO2催化氧化过程中同步测量SO2和SO3的浓度,进而计算得到了该催化氧化反应的转化率随温度(550~1000 K)和压力(3~20 kPa)的变化关系。通过对SO2和SO3高温吸收光谱模型的修正,将测量的混合气体的耦合光谱成功解耦,分别得到SO2和SO3各自的吸收光谱和气体浓度。同时,在实验系统中还设计有冷却分离装置,将反应后的高温SO3气体冷却吸收后测量剩余SO2浓度,并对比验证同步测量得到的SO2浓度的准确性。实验发现,当温度低于590 K时,无SO3生成,但SO2在催化剂...  相似文献   

6.
利用 MODIS 021KM 数据反演成都地区 2018 年逐日 AOD 数据, 并结合 PM2.5 地面监测数据以及气象数据 构建地理加权回归 (GWR) 模型得到成都地区逐月 PM2.5 浓度。结果表明: (1) 和多元线性回归模型相比, GWR 模型 反演的 PM2.5 浓度的 R2、 ERMS 和 EMA 分别为 0.884、 7.8704 µg·m−3 和 6.1566 µg·m−3 , 都优于多元线性回归的 0.808、 9.7098 µg·m−3 和 7.6081 µg·m−3, 说明该模型能有效估算成都地区 2018 年 PM2.5 浓度。 (2) 成都地区 PM2.5 浓度在月尺 度上呈现出先降低、后升高的变化特征。 2 月最高为 67.38 µg·m−3, 7 月最低为 28.31 µg·m−3; PM2.5 浓度季节变化特征 为夏季、秋季、春季、冬季依次递增。 (3) 成都地区 PM2.5 浓度空间分布总体上呈现“中间高、两边低”的特征。西部 地区为 PM2.5 浓度低值区, 中部地区为高值区, 东部的简阳市和金堂县为 PM2.5 浓度次高值区。  相似文献   

7.
通过Al原子吸附和取代的方法对硅烯材料进行掺杂,基于第一性原理计算方法研究了Al掺杂硅烯材料的吸附特性,分析H2、SO2和NH3气体分子在其表面的吸附过程。研究发现,Al吸附硅烯体系由于强的物理吸附对H2敏感,吸附能为-0.51 eV;SO2和NH3以成键的方式吸附在两种掺杂材料上,其中Al取代硅烯体系吸附SO2后打开了0.3 eV的带隙,吸附能为-1.19 eV;Al吸附硅烯体系吸附SO2后带隙缩小,吸附NH3后带隙增大,吸附能分别为-1.01和-0.96 eV。结果表明,Al原子的吸附和取代提高了硅烯材料的吸附性能,为研究Al掺杂硅烯材料的储氢和气敏性能提供理论参考。  相似文献   

8.
利用OMI传感器获取了20052012年中国区域内的SO2柱浓度变化数据,并基于MODIS传感器获取了中国区域内的下垫面土地利用类型数据.应用空间分析的方法,分别分析了中国区域内的SO2柱浓度与时间的空间关联特征,以及与土地利用类型的空间关联特征.通过研究发现,从空间和时间区域来说,乌鲁木齐、京津冀、长江三角洲、四川盆地和珠江三角洲为SO2高浓度区;北方地区SO2浓度冬高夏低且峰值呈现逐年上升的趋势,南方地区则呈现SO2浓度夏高冬低的特点.从土地利用来说,城市和耕地上空的SO2浓度较高,森林、草地和裸地上空的浓度较低.研究结果表明,人类活动在行星边界层SO2分布和浓度变化中起关键作用.  相似文献   

9.
利用 AE-31 型黑碳仪于 2019年 2 月 4–26 日对宝鸡市的黑碳 (BC) 气溶胶进行了在线连续监测, 并结合 PM2:5 质量浓度、风速风向等数据, 采用聚类分析研究了该地区污染期间 BC 质量浓度的变化及来源。结果表明, 观测期间 BC 平均质量浓度为 2.8 µg·m−3, 范围为 0.4∼8.0 µg·m−3; PM2:5 平均质量浓度为 119.9 µg·m−3, 范围为 17.3∼221.9 µg·m−3; 重度污染期间 BC 和 PM2:5 平均质量浓度分别为 3.4 µg·m−3 和 176.4 µg·m−3。空气质量为“良”, BC 质量浓度日变化有 明显峰值; 空气质量为“ 轻度污染”时, BC 质量浓度日变化呈“双峰双谷”型; 当空气质量为“中度和重度污染”时, BC 质 量浓度呈现白天低夜间高的变化趋势。研究结果还发现东南和东北风向对 BC 影响较大。在静风和非静风条件下, 当 空气质量为“良、轻度、中度和重度污染”时, BC 质量浓度分别为 1.9 µg·m−3 和 1.5 µg·m−3、 2.4 µg·m−3 和 2.2 µg·m−3、 3.5 µg·m−3 和 3.0 µg·m−3、 3.7 µg·m−3 和 3.3 µg·m−3, 表明污染越重 BC 浓度越大, 静风条件下, 污染物易累积。进一步 的后向轨迹聚类分析表明, 来自宝鸡东部的气团以及秦岭的阻挡效应对宝鸡 BC 的浓度影响较大。  相似文献   

10.
贺毅  张靖  张英  朱春晓 《电子科技》2023,36(4):21-28
通过检测SF6分解物可发现GIS设备故障,但设备内部分解物扩散效应会影响检测的故障特征组分气体含量,从而导致判断设备故障存在不足,因此文中针对典型SF6分解物SO2在GIS设备内部的扩散效应和影响因素进行研究。文中基于CFD技术,仿真模拟SO2在设备内部的扩散效应,在压力为0.4 MPa条件下,研究了10种初始浓度对SO2扩散的影响,拟合得到了初始浓度与扩散均匀时浓度的函数关系式,为判断故障的严重性提供理论依据。保持初始浓度不变,在压力分别为0.4 MPa、0.5 MPa、0.6 MPa、0.7 MPa和0.8 MPa的条件下,得到SO2扩散达到均匀的时间分别为3 940 s、3 850 s、3 740 s、3 630 s和3 550 s,结果表明SF6气体的压力环境对SO2扩散有一定的影响,压力越大,SO2扩散均匀所需要的时间越短。文中综合讨论了压力和初始浓度共同作用对SO2  相似文献   

11.
为探讨复合污染条件下气溶胶的消光特性, 选取成都市 O3 与 PM2:5 同步污染的春季开展气溶胶组分与消光 特性观测, 并结合美国 IMPROVE 化学消光算法研究了组成与消光特征的关系。结果表明, 2018 年春季成都 PM2:5 平 均浓度与散射系数 bsp 分别为 (50.3±22.4) µg·m−3 和 (237.5±140.2) Mm−1, 且二者均呈现“单峰单谷”的日变化趋势; 大 气气溶胶的消光系数为 (268.4±153.7) Mm−1, 对其贡献最大的组分是 NH4NO3 (26.0%) 和有机物 (OM) (24.4%)。分析 表明在 PM2:5 与 O3 复合污染情况下, 二次污染组分 SNA (SO42−、 NO3−、 NH4+ 三者之和)、二次有机碳 (SOC) 的含量 显著增加, 与清洁天相比分别升高了 1.0 和 1.3 倍; OM 成为最大消光贡献者 (32.2%), 其次是 NH4NO3 和 (NH4)2SO4, 分别贡献 22.8% 和 20.5%。因此, 进一步减少气态前体物如 SO2、 NOx、 NH3 和 VOCs 的排放可以有效改善成都地区 空气质量和能见度。  相似文献   

12.
利用中国环境监测总站发布的2013年11月1日~2014年12月12日污染物实时浓度数据,分析了京津冀地区污染物变化特征。结果显示:PM2.5、PM10、SO2、NO2和CO浓度年平均值分别为95.3, 163.9, 54.7, 48.9 μg/m3, 1.5 mg/m3;五种污染物浓度都表现出冬季高夏季低的季节变化特征,但不同污染物在不同的月份又有其特殊的变化特征。APEC期间京津冀地区PM2.5、PM10、SO2、NO2和CO平均浓度分别为66.1, 123.7, 33.2,、48.5 μg/m3, 1.2 mg/m3。APEC期间京津冀地区PM2.5浓度是APEC前后一个月的60.1%、59.4%;APEC期间气态污染物CO、SO2、NO2浓度与APEC前一个月相当,但APEC后急剧增加。减排措施使京津冀地区PM2.5浓度削减40%左右,PM10削减35%左右,NO2削减10%左右,CO削减15%左右。  相似文献   

13.
无锡市一次霾形成过程大气污染物特征分析   总被引:1,自引:0,他引:1  
于2013年12月21~26日期间对一次霾污染过程中PM2.5、含碳气溶胶、气态污染物(O3,NOx SO2)进行测量,利用微脉冲偏振激光雷达获得气溶胶消光和退偏振度参数,分析了霾过程大气污染物的特征。结果显示:本次霾污染过程持续3.4天,以细粒子污染为主。采样期间,PM2.5的质量浓度小时平均值为131.04µg•m-3,霾天气下为183.75µg•m-3,是非霾天气的2.98倍。碳质气溶胶(TC)占PM2.5的24.18%,并且与PM2.5之间存在较好的相关性(R2=0.790)。在霾天气下TC在PM2.5中所占的比例(TC%,16.65)要比非霾天气(TC%,34.38)小,二次水溶性无机盐粒子的快速增长可能是造成霾天气PM2.5质量浓度较高的重要原因之一。霾天气和非霾天气对比:O3浓度无明显变化,受太阳辐射影响较大;NOx和SO2的体积分数在霾天气下分别是非霾天气下的1.66和1.68倍;SO2浓度的增加不仅与本地SO2的累积有关,还有可能是受外来输入的粒子中存在含硫化合物、抑制了SO2的非均相反应造成的。  相似文献   

14.
PM2.5是影响河南省空气质量的首要污染物,秋冬季节灰霾污染严重。为了解河南省PM2.5污染的特征,对河南省的17个城市,运用统计学方法和ARCGIS技术分析其时空分布特征。结果表明:从2015年1月至12月,河南省17个城市日均质量浓度达标天数比例为57.16%,冬季整体污染严重,超标天数比例为73.68%,春季超标天数比例为44.37%,秋季超标天数比例为34.52%,夏季超标天数比例为20.08%。在去除气象记录的空气质量重污染日之后,周末的PM2.5平均值比工作日高 8.04%,表现出“逆周末效应”。PM2.5/PM10值在0.50~0.65之间,且PM2.5与SO2相关性较高,表明河南省受传统煤烟型污染影响较大,粗粒子污染明显。 PM2.5与PM10、SO2、NO2均呈现显著的相关性,说明河南省的污染主要是由燃煤及机动车尾气造成。由于温度及光照变化的影响,河南省PM2.5与O3在不同季节呈现显著差异,其在冬季和秋季的相关性分别为-0.315(p=0.05)、-0.353(p=0.05),而在夏季的相关性为0.496(p=0.01),春季为0.003。  相似文献   

15.
机动车作为大气PM2.5的重要污染源,其运行产生的氨气(NH3)能与大气中的酸性气体相结合,形成二次污染物。为掌握北京市交通环境中氨的排放情况,探索影响交通环境氨浓度的因素及关系,利用DOAS仪器对交通环境(北航东门天桥下)和城市环境(北京市环境保护监测中心楼顶)NH3的浓度进行持续7个月的观测。结果显示污染物的排放量总体呈现夏季低,春秋季高的特点,交通环境中氨的日平均浓度水平(25.19µg /m3)高于城市环境(15.90µg /m3)。全天浓度变化趋势稳定,均有明显的高峰低谷变化,表明交通污染源对大气氨的贡献较为稳定。从相关性分析可以看出,NH3与PM2.5、NO2、NOx、CO相关性较高,与NO相关性较弱。分析得出3级以上的风有利于氨浓度的快速扩散和降低。对学院路全年各类型机动车排放量和逐小时的排放量进行计算,得到氨排放量主要来自小型客车(汽油)和出租车(汽油)(占97.9%)。  相似文献   

16.
奥运期间北京SO2、NO2、O3以及PM10污染水平及变化特征分析   总被引:1,自引:1,他引:0  
结合遥感所、云岗镇、燕山石化及首都机场4个站点2008年6月至9月期间SO2、NO2、O3以及PM10的监测结果,对北京奥运期间主要污染物浓度水平和变化特征进行分析.PM10为北京市的主要污染物,各时段市区站点PM10均明显高于市郊站点,城郊差异从7月1日至7月19日以及7月20日至8月24日时段的50%减少至8月8日至8月24日以及9月6日至9月17日时段的25%左右.城郊各阶段PM10日变化的差异主要表现在凌晨至11:00前后的时段.一次污染物SO2和NO2均达到国家大气环境质量二级标准,随着减排措施的实施,降幅均超过14%.从日变化曲线来看,各站点NO2基本呈双峰型特征,SO2在燕山石化和云岗镇站点表现出双峰态.O3作为光化学烟雾的指示剂,各站点O3呈现出白天高、夜晚低的日变化特征.云岗镇和燕山石化的O3日变化表现出明显的双峰型.4个站点O3在实施减排措施的初始阶段呈现出升高的趋势, 7月20日后的统计数据表明后期O3浓度持续下降,平均日变化最大值和最小值的比值减小.各个污染物浓度在8月8日至8月24日时段下降最为显著.相比于7月1日至7月19日减排措施实施的起始阶段,各站点在7月20日至8月24日奥运期间SO2、NO2、O3和PM10降低幅度分别为14%~33%,15%~61%,2.5%~14%和10%~12%.  相似文献   

17.
在重庆市大气污染区域输送通道上设置龙市站、超级站、南坪站三个观测站点,利用基于被动DOAS技术的MAX-DOAS地基多轴差分吸收光谱仪对SO2和NO2垂直柱浓度进行连续探测,实时获取两种大气污染物的时空分布和区域性输送过程,并将MAX-DOAS探测结果与当地API数据进行了对比分析。探测结果显示,龙市站、超级站、南坪站NO2垂直柱浓度均值分别为5.90×1015、18.96×1015、17.82×1015molec./cm2,超级站最高,龙市站最低;SO2垂直柱浓度均值分别为16.46×1015、18.35×1015、55.56×1015molec./cm2,南坪站最高,龙市站最低;分析研究表明,NO2受本地交通排放源影响为主,SO2则受周边工业污染源排放的影响较大。  相似文献   

18.
于 2015 年 12 月–2017 年 7 月在重庆城区和远郊站点采集气溶胶样品, 系统研究了该地区气溶胶中棕色碳 (BrC) 吸光特性的时空分布和影响因素, 并评估了 BrC 的辐射吸收贡献。研究结果表明, 该地区冬季 BrC 在 405 nm 的吸光系数 b405,BrC、吸光贡献和单位质量吸光效率均值分别为 (13.0±9.0) Mm−1、 (24.5±6.1)% 和 (0.9±0.2) m2·g−1, 分别是夏季的 11.3、 2.9 和 3.4 倍。城区站点 (YB) 夏、冬季 b405,BrC 值分别为远郊站点 (JY) 的 2.8 和 1.8 倍, 但冬季 城区站点气溶胶吸光指数 E 值和 BrC 在 405 nm 的吸光贡献 [(1.2±0.1) 和 (16.7±5.9)%] 低于远郊站点 [(1.6±0.2) 和 (32.3±6.3)%]。 b405,BrC 与污染源示踪组分的相关性分析表明, 夏季 BrC 吸光特性主要受二次有机气溶胶 SOA 生成的 影响, 而冬季的主要影响来源于生物质燃烧、燃煤和 SOA 生成。与夏季不同 (p > 0.1), 冬季 b405,BrC 与 NH4+、 E 与 NO3− 和 NH4+ 质量分数均显著相关 (p < 0.001)。冬季 E 与 φ 的拟合关系与生物质燃烧模拟结果相似, 表明生物质燃 烧是影响冬季 BrC 吸光特性的主要一次源, 而二次源主要是有机物与 NO3−、 NH4+ 发生的老化过程。重庆冬季 BrC 在 405∼980 nm 和 405∼445 nm 的辐射吸收贡献分别为 (29.1±5.8)%、 (60.8±13.7)%, 约为夏季的 2.9 和 3.2 倍, 表明冬 季 BrC 的辐射吸收贡献显著, 尤其是在短波段范围。  相似文献   

19.
利用离线滤膜-溶剂提取-连续光谱分析的方法在 2016 年 12 月 25 日到 2017 年 12 月 26 日期间对西安市大气 颗粒物进行了连续一年的监测与分析。用石英纤维滤膜收集大气 PM2:5 样品, 再分别利用超纯水和甲醇超声萃取样品 中的水溶性有机碳 (WSOC) 和甲醇可溶性有机碳 (MSOC), 最后进行紫外-可见吸收光谱分析获得样品光吸收特性。 对西安市水溶性棕碳 (BrC) 和甲醇溶性 BrC 在 365 nm 下冬季和夏季的吸光贡献分析发现, 冬、夏两个季节甲醇提 取的有机组分光吸收效率均高于水提取的, 甲醇溶性有机碳质量吸收效率 [MAE(MSOC)] 年均值 [(1.60±0.67) m2·g−1] 是水溶性有机碳质量吸收效率 [MAE(WSOC)] 年均值 [(0.90±0.47) m2·g−1] 的 1.17 倍, 表明有机溶剂萃取组分中含有 更多的吸光能力更强的物质。冬季的 MAE(WSOC) 为 (2.05±0.86) m2·g−1, MAE(MSOC) 为 (1.53±0.36) m2·g−1; 夏季的 MAE(WSOC) 为 (1.06±0.24) m2·g−1, MAE(MSOC) 为 (0.51±0.17) m2·g−1。冬季的 MAE 值总体高于夏季的, 且冬季的 WSOC 的 E250/E265 值 (5.25) 相对低于夏季 (5.58), 可能因冬季燃煤取暖排放导致。对 BrC 中的水溶性有机碳与气象 六要素浓度进行了线性拟合, 结果显示 WSOC 与 PM2:5 (R2 = 0.6417) 和 PM10 (R2 = 0.4035) 有一定的相关性, 但与 O3 (R2 = 0.0682) 没有显示出明显的相关性, 表明其二次光化学反应的来源占比很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号