首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Future broadband wireless communication systems demand high quality of service (QoS) for anytime anywhere multimedia applications. The standards which use orthogonal frequency division multiplexing (OFDM) coupled with multi input multi output (MIMO) are expected to rule the future wireless world. Time selective nature of the channel introduces inter carrier interference (ICI), which is the major performance limiting parameter in OFDM based systems. ICI causes loss in spectral efficiency and results in poor bit error rate (BER) performance, affecting the QoS of MIMO-OFDM systems. The conventional single input single output (SISO)-OFDM-flexible subcarrier spacing (FSS) system offers better performance than the fixed subcarrier spacing systems in terms of ICI mitigation. But BER and spectral efficiency performance of SISO-OFDM-FSS is not good enough to satisfy the requirements of future wireless broadband services. To improve the BER performance, SISO-OFDM system is replaced by space frequency block coded (SFBC)-OFDM system, which adds spatial and frequency diversity benefits to the conventional system. More number of antennas in the MIMO scheme increases the hardware cost, computational complexity and percentage of overhead. In the present study, to improve the spectral efficiency and to reduce the complexity and cost, optimal transmit antenna selection (OTAS) is combined with the SFBC-OFDM-FSS scheme. The simulation results prove that the proposed SFBC-OFDM-FSS-OTAS scheme offers better QoS than the conventional SISO-OFDM-FSS scheme.  相似文献   

2.
Minimum detectable velocity (MDV) and maximum detectable velocity are both important in ground moving target indication (GMTI) systems. Smaller MDV can be achieved by longer baseline via multiple-input multiple-output (MIMO) radar. Maximum detectable velocity is decided by blind velocities associated with carrier frequencies, and blind velocities can be mitigated by orthogonal frequency division signals. However, the scattering echoes from different carrier frequencies are independent, which is not good for improving MDV performance. An improved cyclic-shift transmission is applied in MIMO GMTI system in this paper. MDV performance is improved due to the longer baseline, and maximum detectable velocity performance is improved due to the mitigation of blind velocities via multiple carrier frequencies. The signal model for this mode is established, the principle of mitigating blind velocities with orthogonal frequency division signals is presented; the performance of different MIMO GMTI waveforms is analysed; and the performance of different array configurations is analysed. Simulation results by space–time–frequency adaptive processing proves that our proposed method is a valid way to improve GMTI performance.  相似文献   

3.
Recent research has shown that frequency domain pre-equalization (FDPE) can provide broadcast transmissions over multi-input multi-output (MIMO) frequency selective channels, where the multiple receivers need limited processing. In this paper, we consider the combination of FDPE with parallel and successive Tomlinson-Harashima Precoding (THP) and propose two novel FDPE MIMO schemes, which are referred to as FDPE-P-THP and FDPE-S-THP, respectively, based on the minimum mean square error (MMSE) criterion. The ordering algorithm in the FDPE-S-THP scheme is considered and it is shown that the system with even a randomly selected order can perform almost as well as that with the optimal one. This paper further develops an accurate theoretical performance analysis methodology for the proposed FDPE-THP schemes. Numerical results along with analytical results demonstrate the significant performance improvement of our proposed schemes compared to the conventional FDPE MIMO schemes. The channel estimation errors and channel variation effects on the proposed system are also investigated. It is shown that the performance degradation due to channel variation can be efficiently reduced by applying channel prediction.  相似文献   

4.
Multiple‐input multiple‐output (MIMO) is a topic of high interest for the next generation of broadcasting systems. Even if they have begun to be proposed for the second generation of terrestrial digital TV, there are still gaps in the deployment of MIMO schemes in single‐frequency networks. This deployment becomes more critical when a hybrid satellite–terrestrial transmission is adopted because of the different aspects of the respective transmission links. In this paper, we propose to apply a layered space–time block code (LSTBC) for MIMO schemes in this hybrid transmission for next‐generation handheld (NGH) systems. The contribution of this paper is multi‐fold. First, we detail the land mobile satellite channel specifications describing the satellite link. Then, we propose to apply a MIMO scheme between the antennas of the satellite site and the terrestrial site. Then, we introduce the LSTBC scheme for NGH broadcasting systems. The proposed code is based on a layered construction designed to be efficient in shadowing regions. This efficiency is verified in a line‐of‐sight situation but also in low, moderate and deep shadow situations. The LSTBC scheme is then a very promising candidate for NGH systems with MIMO transmission. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Downlink SINR Distribution of Linearly Precoded Multiuser MIMO Systems   总被引:1,自引:0,他引:1  
This paper derives mathematical expressions for the SINR distribution in systems with linearly precoded multiuser MIMO and frequency domain packet scheduling. The packet scheduler is able to exploit the available multiuser diversity in both time, frequency and spatial domains. Our analysis model is confined to 3GPP downlink transmission in which we specifically investigate the single user (SU) and multi-user (MU) spatial division multiplexing (SDM) MIMO schemes. From the analytical results we find that the outage probability for systems using the SU-MIMO scheme is larger than the one for the MU-MIMO scheme. Also, in comparison to systems without precoding, linear precoding can improve the outage probability.  相似文献   

6.
This paper is concerned with channel estimation and data detection for a cellular multi‐carrier code division multiple access network using single‐hop relaying in the presence of frequency selective fading channels. The proposed expectation–maximization (EM) algorithm was used to jointly estimate both the coefficients of the channel between a relay and a base station and the data. EM algorithm is particularly suited to multi‐carrier code division multiple access systems because they have multi‐carrier signal format. The considered network uses single‐hop relaying technique to provide a higher quality transmission to the users with low quality channels. The base station (managing mechanism) gives them an opportunity to send their messages via the users with high quality channels in a time sharing mode. The performance of the proposed EM algorithm, with and without hopping and with cooperative communication technique, was analyzed by a computer simulation, and the results are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we introduce a transmit multiple-input multiple-output (MIMO) scheme with frequency domain pre-equalization for a multipath or frequency selective channel. In this scheme, MIMO processing in the frequency domain is performed at the transmitter or base station so that the receiver or mobile station only requires limited processing. This scheme provides high data rates and also inherits from the frequency domain equalization the property of relatively low complexity in severe multipath environments. The MIMO transmit processing is derived by minimizing the minimum mean square errors (MMSE), and expressions for the signal-to-interference-plus-noise ratio and error probability based on the Gaussian approximation of the interference term are provided. Some important associated issues, such as channel errors and computational complexity, are also investigated. Numerical simulations are also provided and these demonstrate the improved performance of our proposed scheme compared to other transmit MIMO schemes. In particular, they show that the proposed system can attain multipath or frequency diversity of the channel.  相似文献   

8.
In this paper, we propose several power allocation schemes for multi‐input multi‐output (MIMO) orthogonal frequency division multiplexing (OFDM) transmission based on the minimization of an approximated bit error rate (BER) expression, and we evaluate the different solutions via field trial experimentations. The methods illustrated in this paper, serve to allocate power among the different transmit antennas and the different subcarriers which compose the MIMO OFDM transmitted signal. Several solutions are available to perform power allocation. Frequency domain power allocation, spatial domain power allocation and combined spatial and frequency power allocation are evaluated. We first review and describe the analytical solution for each power allocation scheme and then evaluate the complexity in terms of both computational operations and BER performances. Simulation results show the performance in term of BER and link the advantage of each possibility of power distribution with the associated complexity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
对正交频分复用接入系统在多用户多天线传输情况下的自适应资源分配策略进行了研究,提出了一种基于天线波束成形的,包括动态子载波分配、自适应调制、比特加载的无线资源分配方案.算法的优化设计目标是在满足总的恒定传输比特数和误比特率性能要求的情况下,使得系统总的发射功率最小.仿真结果表明,由于多天线阵列增益和多用户分集增益,系统整体性能得到了明显的优化.  相似文献   

10.
In this paper we study space-time coding schemes for a novel OFDM-based MIMO system which performs adaptive signal combining in radio-frequency (RF). Assuming perfect channel knowledge at the receiver and statistical channel state information at the transmitter, we consider the problem of selecting the transmit and receive RF weights (beamformers), as well as the time and frequency linear precoders, under the assumption of Rayleigh channels. The transmission scheme is based on orthogonal beam division multiplexing (OBDM) and minimum mean-square error (MMSE) receive beamforming, i.e., the data is transmitted by means of several transmit beamformers matched to the spatial correlation matrix, whereas the receive beamformers are selected to minimize the MSE of the linear MMSE receiver. Finally, the performance of the proposed scheme is evaluated by means of Monte Carlo simulations.  相似文献   

11.
The problem of the simultaneous multi-user resource allocation algorithm in orthogonal frequency division multiple access (OFDMA) based systems has recently attracted significant interest. However, most studies focus on maximizing the system throughput and spectral efficiency. As the green radio is essential in 5G and future networks, the energy efficiency becomes the major concern. In this paper, we develop four resource allocation schemes in the downlink OFDMA network and the main focus is on analyzing the energy efficiency of these schemes. Specifically, we employ the advanced multi-antenna technology in a multiple input-multiple output (MIMO) system. The first scheme is based on transmit spatial diversity (TSD), in which the vector channel with the highest gain between the base station (BTS) and specific antenna at the remote terminal (RT) is chosen for transmission. The second scheme further employs spatial multiplexing on the MIMO system to enhance the throughput. The space-division multiple-access (SDMA) scheme assigns single subcarrier simultaneously to RTs with pairwise “nearly orthogonal” spatial signatures. In the fourth scheme, we propose to design the transmit beamformers based on the zero-forcing (ZF) criterion such that the multi-user interference (MUI) is completely removed. We analyze the tradeoff between the throughput and power consumption and compare the performance of these schemes in terms of the energy efficiency.  相似文献   

12.
In this paper, we address the ICI (intercarrier interference) problem and compensation in MIMO (multiple input multiple output) SC‐FDMA (single carrier frequency division multiple access) system that exploits SC‐SFBC (single carrier‐space frequency block coding) scheme. Recently, SC‐FDMA technique has received more attention due to the low PAPR (peak to average power ratio) property. However, SC‐FDMA system is sensitive to phase noise and CFO (carrier frequency offset) which is unavoidable in wireless communication systems. Phase noise and CFO introduce CPE (common phase error) as well as ICI into the received signal and seriously degrade the system performance. Therefore, analysis and suppression of these interferences are of great importance. In this paper, we analyze the interferences in MIMO SC‐FDMA system with SC‐SFBC. Then a new ICI estimation and suppression method is proposed to suppress the interferences. Instead of directly estimating the CFO and phase noise, which is pretty difficult and complex, this algorithm exploits block‐type pilots, which is a common pilot pattern in wireless communication systems, such as LTE standard, to estimate the interferences. After that the interferences are suppressed by the inverse matrix method. Simulation results show that the system performance is significantly improved. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We compare the achievable throughput of time division multiple access (TDMA) multiple‐input multiple‐output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum‐rate capacity of space‐time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi‐user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi‐user channel problems.  相似文献   

14.
Multiple-input multiple-output (MIMO) wireless technology in combination with orthogonal frequency division multiplexing (MIMO OFDM) is an attractive air-interface solution for next-generation wireless local area networks (WLANs), wireless metropolitan area networks (WMANs), and fourth-generation mobile cellular wireless systems. In this paper, one multiuser MIMO OFDM systems with TDD/TDMA was proposed for next-generation wireless mobile communications, i.e., TDD/TDMA 4G, which can avoid or alleviate the specific limitations of existing techniques designed for multiuser MIMO OFDM systems in broadband wireless mobile channel scenarios, i.e., bad performance and extreme complexity of multiuser detectors for rank-deficient multiuser MIMO OFDM systems with CDMA as access modes, extreme challenges of spatial MIMO channel estimators in rank-deficient MIMO OFDM systems, and exponential growth complexity of optimal sub-carrier allocations for OFDMA-based MIMO OFDM systems. Furthermore, inspired from the Steiner channel estimation method in multi-user CDMA uplink wireless channels, we proposed a new design scheme of training sequence in time domain to conduct channel estimation. Training sequences of different transmit antennas can be simply obtained by truncating the circular extension of one basic training sequence, and the pilot matrix assembled by these training sequences is one circular matrix with good reversibility. A novel eigenmode transmission was also given in this paper, and data symbols encoded by space–time codes can be steered to these eigenmodes similar to MIMO wireless communication systems with single-carrier transmission. At the same time,, an improved water-filling scheme was also described for determining the optimal transmit powers for orthogonal eigenmodes. The classical water-filling strategy is firstly adopted to determine the optimal power allocation and correspondent bit numbers for every eigenmode, followed by a residual power reallocation to further determine the additional bit numbers carried by every eigenmode. Compared with classical water-filling schemes, it can also obtain larger throughputs via residual power allocation. At last, three typical implementation schemes of multiuser MIMO OFDM with TDMA, CDMA and OFDMA, i.e., TDD/TDMA 4G, VSF-OFCDM and FuTURE B3G TDD, were tested by numerical simulations. Results indicated that the proposed multiuser MIMO OFDM system schemes with TDD/TDMA, i.e., TDD/TDMA 4G, can achieve comparable system performance and throughputs with low complexity and radio resource overhead to that of DoCoMo MIMO VSF-OFCDM and FuTURE B3G TDD.  相似文献   

15.
This paper shows the trade off between different modulation techniques such as multi level quadrature amplitude modulation, multi level phase shift keying, and multi level differential phase shift keying for upgrading direct detection optical orthogonal frequency division multiplexing systems with possible transmission distance up to 15,000 km and total bit rate of 2.56 Tb/s. The 2.56 Tb/s signal is generated by multiplexing 64 OFDM signals with 40 Gb/s for each OFDM. Variations of optical signal to noise ratio (OSNR), signal to noise ratio (SNR), and bit error rate (BER) are studied with the variations of transmission distance. Maximum radio frequency power spectrum, and output electrical power after decoder are measured for different multi level modulation techniques with carrier frequency. It is observed that multi level QAM has presented better performance than multi level PSK and finally multi level DPSK in optical OFDM systems. Maximum output power after decoder is enhanced with both 32-PSK, and 64-QAM. Quadrature signal amplitude level at encoder is upgraded with 64-QAM. It is noticed that OSNR, SNR, and BER are improved using 4-QAM OFDM system than either QPSK or 4-DPSK.  相似文献   

16.
MIMO OFDM同步技术研究   总被引:1,自引:0,他引:1  
邵峰 《电子科技》2012,25(3):85-89
MIMO OFDM作为一种多天线、多载波传输技术,具有频谱利用率高、抗干扰能力强、传输速度快、传输容量大等特点,目前已经成为4G技术的热门标准之一。但是由于MIMO OFDM系统对频偏和定时比较敏感,因此同步问题的研究显得尤为重要,文中针对目前主流的同步方法做了全面的分析和总结。  相似文献   

17.
The Long Term Evolution‐Advanced (LTE‐A) system is currently under development to allow for significantly higher spectral efficiency and data throughput than the LTE systems. In a wireless system based on orthogonal frequency division multiplexing with frequency reuse factor one, the achievable cell spectral efficiency is often limited by the inter‐cell interference or coverage shortage of base stations. In LTE‐A, coordinated multi‐point transmission/reception (a.k.a. multi‐cell MIMO or base station cooperation) and relaying technologies are being introduced to clear these major performance hurdles. In this paper, cooperative communication technologies being discussed in LTE‐A systems are presented, together with considerations on system design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In the context of the on‐going evolution of satellite communications (SatCom) systems to their next generation, and in the direction of their integration with fifth generation (5G) terrestrial networks, it is of interest to study in depth the applicability in realistic SatCom of waveforms that have shown promise to meet the 5G requirements. This paper presents a comparative study, based on total degradation (TD) over a range of output back‐off (OBO) values, on out‐of‐band emission and spectral efficiency, of frequency division multiple access (FDMA) schemes employing offset quadrature amplitude modulation‐based filter bank multi‐carrier (FBMC /OQAM), classical orthogonal FDMA (OFDMA), and their single‐carrier counterparts to illustrate the potential gains from the integration of the FBMC waveforms in the satellite context and standards. The air interface simulated follows the digital video broadcasting (DVB) family of standards for the satellite uplink, considering both time and frequency synchronization impairments and two typical input constellations. Our results confirm the superiority of the single‐carrier (SC) schemes in such a nonlinear environment. The SC‐FBMC waveform is shown to be the most practical candidate since it is shown to attain a TD performance similar to that of SC‐OFDM at absolutely no cost in spectral efficiency.  相似文献   

19.
对相干光单载波频域均衡系统(CO-SCFDE)、相干光单载波频分复用系统(CO-SCFDM)以及相干光正交频分复用系统(CO-OFDM)的理论和实验进行了对比研究,结果表明基于频域均衡的相干光单载波系统既保留了正交频分复用方式计算复杂度较低、频谱效率高和抗色散性能好的优点,又有效地减小了光纤非线性带来的传输损伤,是高速长距离光纤传输的一种有潜力的技术方案。  相似文献   

20.
The direct-conversion architecture is an attractive front-end design for multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. These systems are typically small in size and provide a good flexibility to support growing number of wireless standards. However, direct-conversion based OFDM systems are generally very sensitive to front-end component imperfections. These imperfections are unavoidable especially when cheaper components are used in the manufacturing process and can lead to radio frequency (RF) impairments such as in-phase/quadrature-phase (IQ) imbalance. These RF impairments can result in a severe performance degradation. In this paper, we propose training based efficient compensation schemes for MIMO OFDM systems impaired with transmitter and receiver frequency selective IQ imbalance. The proposed schemes can decouple the compensation of the transmitter and receiver IQ imbalance from the compensation of the channel distortion. It is shown that the proposed schemes result in an overall lower training overhead and a lower computational requirement as compared to a joint estimation/compensation of IQ imbalance and the channel distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号