首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
高亮度绿色OLED的制备与光电性能研究   总被引:1,自引:7,他引:1  
利用高精度膜厚控制仪,实现有机薄膜功能材料真空热蒸镀,制备了一种多层结构ITO/CuPc(20nm)/α-NPD(60nm)/Alq3(40nm):C545T(2%)/Alq3(20nm/LiF(1nm)/Al(100nm),获得了发射峰位于525nm稳定的绿色有机电致发光二极管(OLED),其起亮电压为2.5V,驱动电压在20V时亮度为10,500cd·m-2,色坐标(CIE)x=0.331、y=0.625,最大流明效率为3.921m·W-1。  相似文献   

2.
钟志有  孙奉娄 《半导体光电》2007,28(5):631-633,637
采用空热蒸发技术制备了结构为ITO/N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (NPB)/tris-(8-hydroxyquinoline)-aluminum (AlQ)/Mg-Ag/Al的异质结结构有机电致发光器件(OLED),研究了ITO电极性质对OLED器件启亮电压、驱动电压、发光亮度和发光效率等光电性能的影响.实验结果表明,电极性质显著影响OLED器件性能,优化的电极性质通过改善电极与有机层之间的界面特性,从而改善器件的光学和电学性能.  相似文献   

3.
制备了结构为ITO/MoO3(40nm)/NPB(40nm)/TCT A(10nm)/CBP:Ir(ppy)2acac(14%nm)/BCP(10nm)/Alq3(30nm)/LiF(1nm)/Al(100nm)的绿色磷光有机电致发光器件(OLED), 通过测量不同电压下器件的亮度、温度、电流和效率等参数,利用瓦格纳热击穿理论和空间 电荷限制电流模型等理论对器件的热电击穿特性进行了 分析和实验研究,进而找到提高OLED寿命的方法。结果表明,在电压较小时,随着时间的增 加,器件的 温度基本稳定在20℃,器件的亮度基本稳定在80cd/m2,器件的电流效率基本稳定在40~60cd/A。在电压较高时,随着时间的增加, 器件的温度在114s内由22.16℃上升到35.91℃,器件的亮度在193s内由17380cd/m2降低到 7585cd/m2,器件的电流效率在106s内由0.122208cd/A降低到0.054515cd/A。原因为,电 压较小时, 载流子获得能量较少,迁移速度较为缓慢,使得器件电流较小,产热少,热量能够及时散发 出去;而当电 压较高时,获得足够能量的电子和空穴运动加剧,器件内部的电流也急剧增大,产热大于散 热,温度升高 较快,器件最终出现了热电击穿,使其性能出现衰减。这表明,OLED的散热对其击穿有着非 常重要的影响,良好的散热条件能够降低器件热电击穿现象发生的概率,进而提高OLED的寿 命。  相似文献   

4.
发光层掺杂蓝色OLED的光电性能研究   总被引:1,自引:0,他引:1  
采用真空热蒸镀技术,在不同的掺杂浓度下,制备了4种双异质型结构的蓝色有机电致发光器件(OLED),其结构为ITO/CuPc(30 nm)/NPB(40 nm)/TPBi(30 nm):GDI691(x%)/Alq3(20 nm)/LiF(1 nm)/Al(50 nm),其中x%为发光层掺杂浓度,分别取1、2、3和4 %.从实验结果分析可知:蓝色OLED的电流-电压(I-V)特性曲线、亮度-电压(L-V)曲线、亮度-电流(L-I)曲线及效率等光电性能随着发光层掺杂浓度的变化而改变.当驱动电压为15 V、掺杂浓度为3%时,器件可获得最大亮度6100 cd·m-2,色坐标CIE为x=0.147、y=0.215,最大流明效率为1.221 m·W-1,电致发光(EL)发光光谱的峰值为468 nm.  相似文献   

5.
柔性有机电致发光器件制备及光电性能研究   总被引:2,自引:1,他引:1  
制作了结构为ITO/PVK:TPD/Alq3/Al、分别以PET为衬底的柔性的和以玻璃为衬底的普通的有机电致发光二极管(OLED),对两种器件的电流密度-电压曲线、光电流-电压曲线及量子效率-电流密度曲线进行了测量与分析。结果表明,它们的光电特性非常接近,但柔性OLEDs(FOLEDs)的开启电压略高;在20V电压驱动下,FOLEDs的亮度达到1000cd/m^2,量子效率为0.27%。对器件进行了抗弯折性能的测试。  相似文献   

6.
以mCP为主体发光材料,蓝绿色磷光染料BGIr1作为掺杂剂,制备了6种不同BGIr1掺杂量的蓝绿色磷光有机电致发光器件(OLED),研究了不同掺杂量对蓝绿色磷光OLED器件发光特性的影响。制得器件的结构为ITO/MoO3(20nm)/NPB(40nm)/mCP:BGIr1(x%,30nm)/BCP(10nm)/Alq3(20nm)/LiF/Al(100nm),其中x%为发光层中磷光染料BGIr1的掺杂量(质量分数)。结果表明,BGIr1掺杂量为18%时,获得器件的发光性能最佳。18%BGIr1掺杂器件在488nm和512nm处获得两个主发射峰,当电流密度为26.5mA/cm2时,获得最大发光效率为6.2cd/A;在15V驱动电压下,获得最大亮度为6 970cd/cm2,CIE坐标为(0.17,0.31)。这说明,BGIr1掺杂改善了器件的发光亮度和色纯度,提高了器件的发光效率。  相似文献   

7.
蓝绿色磷光OLED的制备及发光性能研究   总被引:4,自引:4,他引:0  
以mCP为主体发光材料,蓝绿色磷光染料BGIr1作 为掺杂剂,制备了6种不同BGIr1掺杂量的蓝绿色磷光有机电致发光器件(OLED),研究了不 同掺杂量对蓝绿色磷光OLED器件发光特性的影 响。制得器件的结构为ITO/MoO3(20nm)/NPB(40nm)/mCP:BGIr1(x%,30nm)/BCP(10nm)/Alq3(20 nm)/LiF/Al(100nm),其中x%为发光层中磷光染料BGIr1的掺杂量(质量分数)。结果表明,BGIr1掺杂量 为18%时,获得器件的发光性能最佳。18% BGIr 1掺杂器件在488nm和 512nm处获得两个主发射峰,当电 流密度为26.5mA/cm2时,获得最大发光效率为6.2cd/A;在15V驱动电压下,获得最大亮度为6970cd/cm2, CIE坐标为(0.17,0.31)。这说明,BGI r1掺杂改善了器件的发光亮度和色纯度,提高了器件的发光效率。  相似文献   

8.
对OLED显示驱动技术的专利申请情况进行了分析,并针对该领域的主要申请人近年来的技术研发重点进行了介绍,从而有助于了解OLED显示驱动技术的最新进展.研究表明,目前OLED显示驱动技术的改进主要集中在提高图像显示效果、降低功耗、提高显示面板寿命等方面.  相似文献   

9.
采用NPB掺杂石墨烯作为空穴传输层,制备有机电致发光器件(OLED),器件结构为ITO/NPB:Graphene(20wt.%)(50nm)/Alq3(80nm)/LiF(0.5nm)/Al(120nm)。将其与标准器件ITO/NPB(50nm)/Alq3(80nm)/LiF(0.5nm)/Al(120nm)作性能比较,研究石墨烯对OLED性能的影响。结果表明,在NPB中掺杂石墨烯薄层的器件,在同等条件下性能最佳,当电流密度为90mA/cm2时器件电流效率达到最大值3.40cd/A,与标准器件最高效率相比增大1.49倍;亮度在15V时达到最大值10 070cd/m2,比标准器件最大亮度增大5.16倍。  相似文献   

10.
无氧溅射方法制备OLED的ITO透明电极   总被引:2,自引:1,他引:1  
采用氧化铟锡(ITO)合金材料作为靶材,通过射频磁控溅射制备ITO膜.将获得的ITO膜应用于结构为ITO/m-MTDATA(30 nm)/NPB(20 nm)/Alq3(50 nm)LiF(0.8 nm)/Al(100 nm)的有机电致发光器件(OLED),得到了最大亮度为11560 cd/m2(电压为25V)、最大效率为2.52 cd/A(电压为14 V)的结果.为了获得双面发光,制作了结构为ITO/m-MTDATA(30 nm)/NPB(20 nm)/Alq3(50 nm)LiF(0.8 nm)/Al(20 nm)/ITO(50 nm)的器件,其阳极出光的最大亮度为14460 cd/m2(电压为18V)、最大效率为2.16 cd/A(电压为12V),阴极出光的最大亮度为1 263 cd/m2(电压为19 V)、最大效率为0.26 cd/A(电压为16V).  相似文献   

11.
有机发光二极管(OLED)具有传统照明方式所不具有的固态照明的特点,同时由于自身制作特点还具有LED所不具备的特点,OLED照明将赋予照明光源一些新的功能和涵义.在总结OLED照明研发现状的基础上,探讨了目前OLED照明尚未解决的主要技术问题,并概括分析了解决这些问题的方法.  相似文献   

12.
王昕 《现代显示》2006,(8):45-48,28
有机电致发光技术被认为是可能替代液晶的新一代显示技术,白光有机发光器件由于可应用于液晶显示的背光源、普通照明、特殊光源以及实现全彩色有机发光显示而倍受瞩目。本文对白光有机电致发光器件的结构、工作原理等进行了简单的概述并总结了白光有机发光器件的最新进展。  相似文献   

13.
付相杰  刘俊  何谷峰 《半导体光电》2016,37(3):309-312,330
基于新型有机p型掺杂的电荷产生层,制备了叠层式白光有机发光二极管(OLED).有机p型掺杂层具有很高的导电率,可以在不影响器件电学特性的前提下,通过改变该层的厚度来优化白光OLED的器件性能,调节器件的光色.与传统白光OLED相比,文章研究的叠层式白光OLED制备工艺简单、电荷产生效率高,可应用于平板显示与固态照明.  相似文献   

14.
BCP的厚度对OLED性能的影响   总被引:11,自引:5,他引:6  
设计了一种有机电致发光器件(OLED)结构:ITO/NPB(50nm)/BCP(x)/Alq3(50mm)/LiF(0.5mm)/Al(120nm)。在实验中改变BCP的厚度,调整电子和空穴的注入平衡,控制发光层(EML)。研究发现:当BCP的厚度为0nm时,器件为典型的双层OLED结构,光谱为绿色的Alq3特征光谱;当厚度为8nm或8nm以上时,发光区完全基于NPB层,器件为蓝色发光;当厚度在1nm到8nm时,NPB层和Alq3层对发光都有贡献,EL谱线包括蓝光发射和绿光发射。BCP层起到了调节载流子复合区域和改变器件发光颜色的作用,因此控制BCP的厚度可以改善器件的性能。  相似文献   

15.
设计了结构为Ag/MoOx空穴注入层(HIL)/有机层/LiF/Al/Ag/Alq3的柔性有机电致发光器件(FOLED),研究通过改变HIL层的厚度改变腔长实现对微腔效应的调节,制备了性能优化的微腔FOLED。通过器件性能的对比,得到了可用Ag作为反射阳极的顶发射微腔FOLED全彩显示器件优化结构,即蓝、绿和红FOLED对应的优化HIL层厚度分别为100nm、120nm和160nm。  相似文献   

16.
一种新型金属配合物有机电致发光器件   总被引:10,自引:9,他引:1  
以一种新型的含蒽荧光团双磷配体螯合Ag(L1Ag)为发光材料,制成有机电致发光二极管(OLEDs),结构分别为:ITO/L1Ag/Al;ITO/聚乙稀咔唑(PVK):L1Ag/Al。成功实现了明亮稳定的电致发光(EL),在534nm处均匀稳定地发出明亮的绿光。通过在L1Ag中混入空穴传输层材料聚乙烯咔唑(PVK),显著地提高了器件的综合发光性能,其光电流和量子效率分别提高了4.5倍和4.7倍,光电流达1.5×10-7A,量子效率为1.83×10-3%。对这种新型金属螯合物OLEDs的发光和电学性能进行了深入的研究。  相似文献   

17.
A new kind of rare earth (RE) complex Tb(o-MBA)3phen was synthesized and used as an emitting material in electroluminescence. The material was doped into poly(N-vinylcarbazole) (PVK) as the emitting layer,which was made by spin coating. Three kinds of devices were fabricated with the structures: (A) ITO/PVK:Tb(o-MBA)3phen/LiF/A1; (B) ITO/PVK:Tb(o-MBA)3phen/BCP/AIQ3/LiF/A1; (C) ITO/BCP/PVK:Tb(o-MBA)3phen/A1Q3/LiF/A1. Bright green emission could be obtained from device (A) and (C). The photoluminescence (PL) and electroluminescence (EL) mechanisms of this material had been investigated. Since there was an overlap between the PL spectrum of PVK and the excitation spectrum of the terbium complex, there should be a F6rster energy transfer process between them. The excitation spectrum of PVK doped Tb(o-MBA)3phen system is similar with the excitation spectrum of PVK,yet it is different from that of Tb(o-MBA)3phen. So, the emission of Tb(o-MBA)3phen should partly come from the excitation of PVK while in the organic light-emitting diode (OLED), based on Tb(o-MBA)3phen, the emission mainly comes from the direct recombination of electron and hole. Bright green emission can be obtained from the optimized multi-layer device (C) and the highest EL brightness reached 180 cd/m2 at the voltage of 17 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号