首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.  相似文献   

2.
White light can be produced by a combination of red, green and blue emitting diode chips or by the combination of a single diode chip with phosphors. Presently, more single chip white light-emitting diodes (LEDs) than multi-chip one are used because of their low cost, easily controlled circuitry, ease of maintenance and favorable luminescence efficiency. Since phosphors must be used as light converting materials in a single diode chip to obtain the desired emission, this study considers the problems encountered in using phosphors in LEDs. The proper application of phosphors in the package of LED can improve its efficiency, color rendering and thermal stability of luminescence. For example, a uniform size distribution of phosphors with red, green and blue emission helps to improve luminescence efficiency by preventing cascade excitation; the change in color with temperature can be overcome by counter-balancing red-shifting and blue-shifting phosphors; larger particles help to ensure the high efficiency of high-power LEDs, and costs can be reduced by using small particles size in low-power LED packaging because allows less phosphor to be used to obtain a particular efficiency.  相似文献   

3.
Electrospinning used to fabricate eco-friendly, transparent, human hair-based nanofibers (NFs) using natural resources such as keratin (which is found in hair, wool, feather, nails, and horns). These NF-based textiles are very useful in making transparent, wearable electronics, as they possess unique optical properties in the visible light regions, such as transparency exceeding 85%. The resulting environmentally friendly, hair-based NFs were investigated through various methods. In order to study transparent property of optically transparent NFs for applying transparent wearable devices, we fabricated transparent flexible consolidated sandwich structures embedded in NF textiles with polymer light-emitting diodes (PLEDs). The devices exhibit the fabrication process and characterization of consolidated textiles and PLEDs by using various color emission type of polymer. Also, we investigated a comparison between PLEDs without textiles and consolidated PLEDs with textile. When used white, red, and yellow polymer in this consolidated textile/LEDs/textile structures, the performances of device was obtained from a spectrally white, red, and yellow color light with a maximum luminance of 2781, 2430, and 6305 cd/m2 at 13, 11, and 10 V, respectively. The LED characteristics of the consolidated PLEDs with textile maintained similar device efficiencies of PLEDs without textiles.  相似文献   

4.
Because of outstanding optical properties and non‐vacuum solution processability of colloidal quantum dot (QD) semiconductors, many researchers have developed various light emitting diodes (LEDs) using QD materials. Until now, the Cd‐based QD‐LEDs have shown excellent properties, but the eco‐friendly QD semiconductors have attracted many attentions due to the environmental regulation. And, since there are many issues about the reliability of conventional QD‐LEDs with organic charge transport layers, a stable charge transport layer in various conditions must be developed for this reason. This study proposes the organic/inorganic hybrid QD‐LEDs with Cd‐free InP QDs as light emitting layer and inorganic ZrO2 nanoparticles as electron transport layer. The QD‐LED with bottom emission structure shows the luminescence of 530 cd m?2 and the current efficiency of 1 cd/A. To realize the transparent QD‐LED display, the two‐step sputtering process of indium zinc oxide (IZO) top electrode is applied to the devices and this study could fabricate the transparent QD‐LED device with the transmittance of more than 74% for whole device array. And when the IZO top electrode with high work‐function is applied to top transparent anode, the device could maintain the current efficiency within the driving voltage range without well‐known roll‐off phenomenon in QD‐LED devices.  相似文献   

5.
One of the methods to derive white light from light emitting diodes(LEDs) is the multi-chip white LED technology, which mixes the light from red, green and blue LEDs. Introduced is an optimal algorithm for the spectrum design of the multi-chip white LEDs in this paper. It optimizes the selection of single color LEDs and drive current controlling, so that the multi-chip white LED achieves the target correlated color temperature (CCT), as well as high luminous efficacy and good color rendering. A CCT tunable LED light source with four high-power LEDs is realized based on the above optimal design. Test results show that it maintains satisfactory color rendering and stable luminous efficacy across the whole CCT tuning range. Finally, discussed are the design improvement and the prospect of the future applications of the CCT tunable LED light source.  相似文献   

6.
In response to the call for a physiologically‐friendly light at night that shows low color temperature, a candle light‐style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light‐style emission is driven by electricity in lieu of the energy‐wasting and greenhouse gas emitting hydrocarbon‐burning candles invented 5000 years ago. This candle light‐style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.  相似文献   

7.
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays.  相似文献   

8.
新型白光LED驱动电路   总被引:3,自引:0,他引:3  
显示系统能够显示更多内容和更具功能性的前景预测,使绿色显示向更高分辨率的方向发展。白光LED由于所具有的低成本、长寿命和小体积的特性正在迅速成为照明和背光源的选择。但是由于白光LED(3.1~4.0V)相对于绿光LED(1.8~2.7V)具有更高的电压降,因而绿光LED可以直接由带有一个镇流电阻的线性稳压器来供电,而用于照明和背光的白光LED需要对电池电压进行升压。本文将着重讨论几种驱动白光LED的新方法,并分析每种方法的优点。  相似文献   

9.
当前,散热问题已成为影响LED寿命、光效、光衰和色温等技术参数的重要因素。文章在综合分析散热技术和LED封装对散热性能影响的基础上,利用COB(板上芯片)封装技术,将LED芯片直接封装在铝基板上,研制成了一种基于COB封装技术的LED。与SMD封装LED进行比较,分析了其散热性能。分析结果表明:基于COB封装技术的LED减少了LED器件的结构热阻和接触热阻,使其具有良好的散热性能。  相似文献   

10.
近紫外芯片激发三基色荧光粉制作的白光LED   总被引:5,自引:5,他引:0  
使用近紫外半导体芯片激发红绿蓝三基色荧光粉,制作了白光发光二极管(LED),并研究了其光电特性。结果表明,采用发射峰值波长分别在613、495和451nm的红绿蓝荧光粉,在波长400nm左右半导体芯片激发下的白光LED,其显色指数Ra最大为82;使用YAG荧光粉代替绿色荧光粉后,Ra提高到93。测试结果还表明,当工作电...  相似文献   

11.
双通道PWM的冷暖白光LED混色模型研究   总被引:1,自引:0,他引:1  
LED光色度的动态调节是实现智能照明的基础, 采用冷暖白光LED和双通道脉冲宽度调制(PWM)法,基于1931CIE标准建立混合光源模型,推导出混合光源色坐标、相关色温 、最大亮度、显色指数与双通道调制脉冲 占空比比值的关系式。采用暖白光(色温3282 K)和冷白光(色温12930K)两种白光LED进行 混色实验, 通过微控制器输出PWM信号控制LED驱动电源,改变冷色光和暖色光的比重,得到的混合 光源色坐 标、最大亮度、相关色温及显色指数值与理论计算值吻合很好,证明了理论模型的正确性。 理论和实验结 果还表明,混合光源在双通道调制脉冲占空比比值为1的附近可得到低色温、高显色性和大 光通量的混合白光。  相似文献   

12.
Luminance homogeneity is an important aspect for large-area (>1 cm2) organic light emitting diodes (OLED). Especially, high sheet resistances of transparent contacts lead to a significant brightness inhomogeneity caused by a drop of local potential difference. Therefore the implementation of thin low-resistance metallic grids onto transparent contacts is a crucial development aspect for large-area OLED design. We develop a finite-element electro-optical simulation for OLED using grid structures to optimize geometry, thickness and width of grid elements. We find an exponential relationship between luminance homogeneity and grid material volume, which leads to limitations of minimal grid line width and maximal emissive area for efficient development of large-area OLED.  相似文献   

13.
Design Methodology for High Brightness Projectors   总被引:2,自引:0,他引:2  
The low luminance levels of light-emitting diodes (LEDs) compared to arc lamps make it difficult to design high-brightness LED-based projectors. Besides, the specificities of LEDs do not always allow using the same design schemes as with arc lamp-based projection displays. This paper performs a taxonomy of the techniques that can be used to increase the brightness of LED-based projection displays. We show that, in etendue-limited systems, the perceived brightness depends on the system etendue limit, the efficiency of the light engine, and the source luminance. The ability to improve each of these parameters depends on the design constraints. The system etendue limit can be increased at the expense of bulkier, more complex, and more expensive designs. The light engine efficiency can be increased by using free-form shape components adapted to the shapes and the emission patterns of the considered LEDs. The apparent source luminance can be increased at the expense of the flux by either recycling light or restricting the light collection to a smaller etendue with higher average luminance. Luminance can also be increased by using multiple color primaries (spatial multiplexing) or pulsed LEDs (temporal multiplexing). Finally, we review how light recycling can be implemented to convert polarization without increasing etendue.  相似文献   

14.
以8-羟基喹啉(q)和1,3-二苯基-1,3-丙二酮定向合成了有机小分子配合物Znq(DBM),将其作为发光层制备了单色有机电致发光器件(OLED)。在结构为ITO/m-MTDATA(5nm)/NPB(40nm)/Znq(DBM)(60nm)/LiF(0.5nm)/Al(100nm)的器件中,启亮电压为5V,最大亮度达到4 575cd/m2。同时又在器件中引入间隔层BCP,研究其不同厚度对OLED性能的影响。在结构为ITO/m-MTDATA(5nm)/NPB(40nm)/BCP(x nm)/Znq(DBM)(60nm)/LiF(0.5nm)/Al(100nm)的器件中,当BCP层厚为0nm时,发光颜色为黄绿色;当BCP层厚为1nm时,发光颜色为白色,色坐标为(0.29,0.33),最大亮度为2 231cd/m2;当BCP层厚为5nm时,发光颜色为蓝色。根据器件结构和性能,讨论了其内部机理。  相似文献   

15.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

16.
The unique and unprecedented electroluminescence behavior of the white‐emitting molecule 3‐(1‐(4‐(4‐(2‐(2‐hydroxyphenyl)‐4,5‐diphenyl‐1H‐imidazol‐1‐yl)phenoxy)phenyl)‐4,5‐diphenyl‐1H‐imidazol‐2‐yl)naphthalen‐2‐ol (W1), fluorescence emission from which is controlled by the excited‐state intramolecular proton transfer (ESIPT) is investigated. W1 is composed of covalently linked blue‐ and yellow‐color emitting ESIPT moieties between which energy transfer is entirely frustrated. It is demonstrated that different emission colors (blue, yellow, and white) can be generated from the identical emitter W1 in organic light‐emitting diode (OLED) devices. Charge trapping mechanism is proposed to explain such a unique color‐tuned emission from W1. Finally, the device structure to create a color‐stable, color reproducible, and simple‐structured white organic light‐emitting diode (WOLED) using W1 is investigated. The maximum luminance efficiency, power efficiency, and luminance of the WOLED were 3.10 cd A?1, 2.20 lm W?1, 1 092 cd m?2, respectively. The WOLED shows white‐light emission with the Commission Internationale de l′Eclairage (CIE) chromaticity coordinates (0.343, 0.291) at a current level of 10 mA cm?2. The emission color is high stability, with a change of the CIE chromaticity coordinates as small as (0.028, 0.028) when the current level is varied from 10 to 100 mA cm?2.  相似文献   

17.
Aiming at the problem of luminance uniformity for organic lighting-emitting diode (OLED) panels, a new brightness calculating method based on bilinear interpolation is proposed. The irradiance time of each pixel reaching the same lumi- nance is figured out by Matlab. Adopting the 64×32-pixel, single color and passive matrix OLED panel as adjusting luminance uniformity panel, a new circuit compensating scheme based on FPGA is designed. VH L is used to make each pixel's irradiance time in one flame period written in program. The irradiance brightness is controlled by changing its irradiance time, and finally, luminance compensation of the panel is realized. The simulation result indicates that the design is reasonable.  相似文献   

18.
《Organic Electronics》2003,4(1):21-26
We demonstrate a transparent, inverted, electrophosphorescent n–i–p organic light emitting diode (OLED) exhibiting a luminance of 500 cd/m2 at 3.1 V, and with a luminous power efficiency of 23 lm/W when light emitted from both top and bottom surfaces is summed. We find that 10% more light is emitted from the top surface; hence a power efficiency of 12 lm/W is obtained for a device viewed through the top, transparent contact. This device, with applications to head-up and displays employing n-type Si driver circuitry, has significantly higher power efficiency and lower drive voltage than undoped fluorescent inverted OLEDs. Efficient injection of both electrons and holes is made possible by controlled n- and p-doping of the transport layers with high doping levels. The light emitting region is protected from ITO sputtering damage by a 210 nm thick p-doped hole transport layer. The transparency of the device at the peak OLED emission wavelength of 510 nm is (80 ± 5)%.  相似文献   

19.
One central challenge in LEDs is to increase light extraction; but for display applications, other factors may have equal significance, such as ambient‐light absorption, contrast, viewing angle, image sharpness, brightness, and low‐glare. However, current LED structures enhance only some of the factors, while degrading the others. Here, a new organic LED (OLED) structure is proposed and demonstrated, with a novel plasmonic nanocavity, termed “plasmonic cavity with subwavelength hole‐array” (PlaCSH), and exhibits experimentally significant enhancements of all above factors with unprecedented performances. Compared to the conventional OLEDs (the same but without PlaCSH), PlaCSH‐OLEDs achieve experimentally: i) 1.57‐fold higher external‐quantum‐efficiency and light‐extraction‐efficiency (29%/32% without lens, 55%/60% with lens)—among the highest reported; ii) ambient‐light absorption not only 2.5‐fold higher but also broad‐band (400 nm) and nearly angle and polarization independent, leading to lower‐glare; iii) fivefold higher contrast (12 000 for 140 lux ambient‐light); iv) viewing angle tunable by the cavity length; v) 1.86‐fold higher normal‐view‐brightness; and vi) uniform color over all emission angles. The PlaCSH is an excellent optical antenna—excellent in both radiation and absorption of light. Furthermore, PlaCSH‐OLEDs, a simple structure to produce, are fabricated using nanoimprint over large‐area (≈1000 cm2), hence scalable to wallpaper size.  相似文献   

20.
Investigation of changes of operation and noise characteristics during aging process of light-emitting diodes (LEDs) has been carried out. Several groups of different design (different optics) LEDs based on different materials (nitride-based blue and white LEDs, phosphide-based red LEDs) have been investigated. It is found that leakage current components appear due to LED’s defects and their affect is observed as increase of both the low frequency electrical noise intensity and non-ideality factor of current-leakage characteristic in small current region. No considerable changes of light intensity characteristics during LEDs aging have been observed. Noise modeling, spectral and correlation analysis of optical and electrical fluctuations show on partly correlated optical and electrical fluctuations caused by defects in the active region of the LED. Degradation processes of investigated LEDs foremost occur in the diode chip and lead to the leakage current that has important affect to the electrical fluctuation level, but practically has a weak influence to the light emission properties of LED. Phosphorous layer of white LEDs and additional optical elements have no significant influence to the reliability of investigated LEDs under given aging conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号