首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The variation of the microstructure and corresponding properties of several Cu-based Au alloys with differing Sn contents was investigated. Both bulk alloys and thin films of the same composition were studied to determine whether characterization of the bulk alloys could be used to predict the optimal thin film composition. For bulk alloys with less than 10% Sn content, the electrical resistivity and hardness were found to be only slightly increased over those of a Cu-Au alloy with no added Sn ; however they increase rapidly with further increases in Sn content. A microstructural study indicated that these changes in properties are primarily attributable to the formation of a hard ε-Cu3Sn phase. The characteristic needle shape of these preciptated particles, as well as their volume fraction, seems to contribute to the embrittlement of the alloy. The orientation relationship between α-Cu and the ε-Cu3Sn precipitate was found to be {fx191-1} and {fx191-2} The relative variation in resistivity as a function of Sn concentration was the same for the thin film and the bulk alloy, although their absolute values were different because of surface oxidation and small grain size in thin films. Given the observed microstructural similarity, the similar composition depen dence leads to the conclusion that the properties of bulk alloys may be used to make reasonable predictions about the behavior of thin films in systems in which the thin film phase composition is the equilibrium one by heat treatment.  相似文献   

2.
Electroless cobalt films have been obtained by deposition using a plating bath containing two reducing agents: dimethylamineborane (DMAB) and sodium hypophosphite. This formulation allows spontaneous activation on copper followed by auto catalytic electroless plating. CoWBP and CoBP films are proposed as diffusion barriers and encapsulation layers, for copper lines and via contacts for ULSI interconnect applications. The crystalline structure, chemical composition and oxidation states of the elements were studied, as well as the electrical resistivity, topography and morphology of the films. The film composition was characterized as a function of the solution composition; the barrier properties of the films were tested and an oxidation resistance study was conducted. The films were characterized and the results show that they can be applied as capping layers for ULSI copper metallization.  相似文献   

3.
Cu-doped ZnTe films deposited by rf-magnetron sputtering have been analyzed with the intention to use this material as a contact interface in CdS/CdTe thin-film photovoltaic solar-cell devices. It is observed that unless careful attention is made to the pre-deposition conditioning of the ZnTe target, the electrical resistivity of thin films (∼70 nm) will be significantly higher than that measured on thicker films (∼1.0 μm). It is determined that N contamination of the target during substrate loading is likely responsible for the increased film resistivity. The effect of film composition on the electrical properties is further studied by analyzing films sputtered from targets containing various Cu concentrations. It is determined that, for targets fabricated from stoichiometric ZnTe and metallic Cu, the extent of Zn deficiency in the film is dependent on both sputtering conditions and the amount of metallic Cu in the target. It is observed that the carrier concentration of the film reaches a maximum value of ∼3 × 1020 cm−3 when the concentrations of Te and (Zn+Cu) are nearly equal. For the conditions used, this optimum film stoichiometry results when the concentration of metallic Cu in the target is ≈6 at.%.  相似文献   

4.
The thermal performance of sputtered Cu films with dilute insoluble W (1.3 at.%) on barrierless Si substrates has been studied, using the analyses of focused ion beam, x-ray diffraction, and electrical resistivity measurement. The role of the Cu(W) film as a seed layer has been confirmed based on the thermal performance evaluations in both thermal cycling and isothermal annealing at various temperatures. The electrical resistivity of ∼1.8 μΩ-cm for Cu/Cu(W) film is obtained after thermal annealing at 400°C. Because of the good thermal stability, the Cu(W) seed layer is also considered to act as a diffusion buffer and is stable up to 490°C for the barrierless Si scheme. The results indicate that the Cu/Cu(W) scheme has potential in advanced barrierless metallization applications.  相似文献   

5.
In this work, an electroless CoWP film deposited on a silicon substrate as a diffusion barrier for electroless Cu and silicon has been studied. Four different Cu 120 nm/CoWP/Si stacked samples with 30, 60, 75, and 100 nm electroless CoWP films were prepared and annealed in a rapid thermal annealing (RTA) furnace at 300°C to 800°C for 5 min. The failure behavior of the electroless CoWP film in the Cu/CoWP/Si sample and the effect of CoWP film thickness on the diffusion barrier properties have been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and sheet resistance measurements. The composition of the electroless CoWP films was 89.4 at.% Co, 2.4 at.% W, and 8.2 at.% P, as determined by energy dispersive X-ray spectrometer (EDS). A 30 nm electroless CoWP film can prevent copper penetration up to 500°C, and a 75 nm electroless CoWP film can survive at least up to 600°C. Therefore, increasing the thickness of electroless CoWP films effectively increases the failure temperature of the Cu/CoWP/Si samples. The observations of SEM and TEM show that interdiffusion of the copper and cobalt causes the failure of the electroless CoWP diffusion barriers in Cu/CoWP/Si during thermal annealing.  相似文献   

6.
The crystal structure, electrical and optical properties of ZnSe thin films deposited on an In2O3:Sn (ITO) substrate are evaluated for their suitability as the window layer of CdTe thin film solar cells. ZnSe thin films of 80, 90, and 100 nm thickness were deposited by a physical vapor deposition method on Indium tin oxide coated glass substrates. The lattice parameters are increased to 5.834 Å when the film thickness was 100 nm, which is close to that of CdS. The crystallite size is decreased with the increase of film thickness. The optical transmission analysis shows that the energy gap for the sample with the highest thickness has also increased and is very close to 2.7 eV. The photo decay is also studied as a function of ZnSe film thickness.  相似文献   

7.
In this paper, we present electrical and material properties of thin films (100 to 400 nm) of magnetron-sputtered ferroelectric PZT for memory applications. The optimal lead-compensation power (and the resulting film composition) is independent of film-thickness. Reduction of film-thickness leads to a reduction in the crystallization temperature (from 700°C for 400 nm films to 575°C for 100 nm films), and yields evidence for a two-step growth of perovskite rosettes. An optimized 100 nm film yields 12 μC/cm2 for 1.5V operation and fatigues by 25% after 1010 unipolar stress cycles.  相似文献   

8.
Thin films of ZrB x (0 ≤x ≤ 2) have been deposited on Si substrates by dc magnetron sputtering. The effects of annealing the films have been studied as a function of film composition by sheet resistance measurements, supplemented by Rutherford backscat-tering, Auger electron spectroscopy and x-ray diffraction. Significant departures of film composition from stoichiometric ZrB2 can result in an accompanying Zr-Si reaction cou-ple during annealing treatment which influences the overall film behaviour. These ef-fects are discussed with respect to the possible usefulness of ZrB2 films for VLSI metalli-sation and barrier layer applications.  相似文献   

9.
Thin film microstructure and its properties can be effectively altered with post deposition heat treatments. In this respect, CdTe thin films were deposited on glass substrates at a substrate temperature of 200 °C using thermal evaporation technique, followed by air annealing at different temperatures from 200 to 500 °C. Structural analysis reveals that CdTe thin films have a cubic zincblend structure with two oxide phases related to CdTe2O5 and CdTeO3 at annealing temperature of 400 and 500 °C respectively. Regardless of the annealing temperature, the plane (111) was found to be the preferred orientation for all films. The crystallite size was observed to increase with annealing temperature. All films were found to display higher lattice parameters than the standard, and hence found to carry a compressive stress. Optical measurements suggest high uniformity of films both before and after post deposition heat treatment. Films annealed at 400 °C displayed superior optical properties due to its high refractive index, optical conductivity, relative density and low disorder. Furthermore, according to the compositional measurements, CdTe thin films were found to exhibit Te rich and Cd rich nature at regions near the substrate and center of the film respectively, for all annealing temperatures. However, composition of the regions near the substrate was found to become more Te rich with increasing annealing temperature. The study suggests that changing the annealing temperature as a post deposition treatment affects structural and optical properties of CdTe thin film as well as its composition. According to the observations, films annealed at 400 °C can be concluded to be the best films for photovoltaic applications due to its superior optical and structural properties.  相似文献   

10.
The effect of oxidation at room temperature on the thermoelectric properties of PbSe/KCl (001) thin films prepared by thermal evaporation was investigated. The dependences of the electrical conductivity, the Hall coefficient, charge carrier mobility, and thermopower on the PbSe layer thickness (d=4–200 nm) were obtained. An inversion of the sign of the dominant carriers from n to p at d∼80 nm was observed under decreasing d. The d dependences of the thermoelectric properties were interpreted, taking into consideration the oxidation processes at the film/air interface within the framework of models considering both n-type and p-type carriers.  相似文献   

11.
Low dielectric constant materials as interlayer dielectrics (ILDs) offer a way to reduce the RC time delay in high-performance ultra-large-scale integration (ULSI) circuits. Fluorocarbon films containing silicon have been developed for interlayer applications below 50-nm linewidth technology. The preparation of the films was carried out by plasma-enhanced chemical vapor deposition (PECVD) using gas precursors of tetrafluorocarbon as the source of active species and disilane (5 vol.% in helium) as a reducing agent to control the ratio of F/C in the films. The basic properties of the low dielectric constant (low-k) interlayer dielectric films are studied as a function of the fabrication process parameters. The electrical, mechanical, chemical, and thermal properties were evaluated including dielectric constant, surface planarity, hardness, residual stress, chemical bond structure, and shrinkage upon heat treatments. The deposition process conditions were optimized for film thermal stability while maintaining a relative dielectric value as low as 2.0. The average breakdown field strength was 4.74 MV/cm. The optical energy gap was in the range 2.2–2.4 eV. The hardness and residual stress in the optimized processed SiCF films were, respectively, measured to be in the range 1.4–1.78 GPa and in the range 11.6–23.2 MPa of compressive stress.  相似文献   

12.
Coupling effects among mechanical, electrical and magnetic parameters in thin film structures including ferroic thin films provide exciting opportunity for creating device functionalities. For thin films deposited on a substrate, their mechanical stress and microstructure are usually determined by the composition and processing of the films and the lattice and thermal mismatch with the substrate. Here it is found that the stress and structure of an antiferroelectric (Pb0.97,La0.02)(Zr0.90,Sn0.05,Ti0.05)O3 (PLZST) thin film are changed completely by a ferroelastic strain in a magnetic shape memory (MSM) alloy Ni‐Mn‐Ga (NMG) thin film on the top of the PLZST, despite the existence of the substrate constraint. The ferroelastic strain in the NMG film results in antiferroelectric (AFE) to ferroelectric (FE) phase transformation in the PLZST layer underneath. This finding indicates a different strategy to modulate the structure and function for multilayer thin films and to create unprecedented devices with ferroic thin films.  相似文献   

13.
In this work, designed growth of aluminum (Al)/aluminum-doped zinc oxide (AZO), AZO/Al/AZO, and AZO/Al multilayer electrodes by radiofrequency (RF) magnetron sputtering on glass substrates was studied. The microstructures, optical properties, and electrical characteristics of the multilayer electrode thin films were analyzed, their structural denseness and thickness were observed by field-emission scanning electron microscopy (FE-SEM), and their crystal orientation was identified by x-ray diffraction (XRD). The resistivity and transmittance of the films were measured by four-point probe and UV–Vis–NIR spectrophotometer, respectively. The resistivity of the AZO/Al/AZO multilayer electrode thin film was 1.55 Ω cm. The average transmittance of the AZO/Al/AZO thin film over wavelengths from 400 nm to 800 nm was much better than that of other thin films, since Al nanoparticles distribute in the AZO thin film during the sputtering process, as observed by high-resolution transmission electron microscopy (HRTEM). In addition, the figure of merit of the AZO/Al/AZO trilayer film was much larger than those of the other structures.  相似文献   

14.
Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical stresses. This work discusses the property require- ments for thermoelectric interface materials, reviews relevant data available in the literature for CNT films, and characterizes the thermal properties of vertically aligned multiwalled CNTs grown on a candidate thermoelectric material. Nanosecond thermoreflectance thermometry provides thermal property data for 1.5-μm-thick CNT films on SiGe. The thermal interface resistances between the CNT film and surrounding materials are the dominant barriers to thermal transport, ranging from 1.4 m2 K MW−1 to 4.3 m2 K MW−1. The volumetric heat capacity of the CNT film is estimated to be 87 kJ m−3 K−1, which corresponds to a volumetric fill fraction of 9%. The effect of 100 thermal cycles from 30°C to 200°C is also studied. These data provide the groundwork for future studies of thermoelectric materials in contact with CNT films serving as both a thermal and electrical interface.  相似文献   

15.
The dependence of the microstructure and optical properties of SnS thin films fabricated by hot wall deposition onto glass substrates on the deposition conditions is studied. Phase and elemental composition, surface morphology, and transmission spectra of the obtained films are investigated within the wavelength range 400–2500 nm. The single-phase films feature near-stoichiometric elemental composition and a high degree of preferential orientation in the (040) plane. The optical band gap for direct transitions is 1.07–1.27 eV, depending on film thickness.  相似文献   

16.
The experimental results of synthesizing thin films (<1 μm thick) of (SnO2) x (In2O3)1 − x (x = 0.5–1 wt) nanocomposites fabricated by high-frequency magnetron sputtering of metal-oxide targets in a controlled Ar + O2 atmosphere are presented. The films, deposited on hot substrates (400°C), are studied by the X-ray diffraction analysis, atomic-force microscopy, and optical and electrical methods. The effect of the synthesis conditions and film composition on the size of crystalline grains, band gap, and the concentration and mobility of free charge carriers was determined. It is shown that films of the composition (SnO2) x (In2O3)1 − x with x = 0.9 are the most promising for applications in gas sensorics.  相似文献   

17.
The present communication reports the effect of thermal annealing on the physical properties of In2S3 thin films for eco-friendly buffer layer photovoltaic applications. The thin films of thickness 150 nm were deposited on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing in air atmosphere within a low temperature range 150–450 °C. These as-deposited and annealed films were subjected to the X-ray diffraction (XRD), UV–vis spectrophotometer, current–voltage tests and scanning electron microscopy (SEM) for structural, optical, electrical and surface morphological analysis respectively. The compositional analysis of as-deposited film is also carried out using energy dispersive spectroscopy (EDS). The XRD patterns reveal that the as-deposited and annealed films (≤300 °C) have amorphous nature while films annealed at 450 °C show tetragonal phase of β-In2S3 with preferred orientation (109) and polycrystalline in nature. The crystallographic parameters like lattice constant, inter-planner spacing, grain size, internal strain, dislocation density and number of crystallites per unit area are calculated for thermally annealed (450 °C) thin films. The optical band gap was found in the range 2.84–3.04 eV and observed to increase with annealing temperature. The current–voltage characteristics show that the as-deposited and annealed films exhibit linear ohmic behavior. The SEM studies show that the as-deposited and annealed films are uniform, homogeneous and free from crystal defects and voids. The grains in the thin films are similar in size and densely packed and observed to increase with thermal annealing. The experimental results reveal that the thermal annealing play significant role in the structural, optical, electrical and morphological properties of deposited In2S3 thin films and may be used as cadmium-free eco-friendly buffer layer for thin films solar cells applications.  相似文献   

18.
There has been sustained interest in using TiN and other sputter deposited thin film materials in electronics applications, such as barrier coatings. However, it is difficult to produce “pin-hole free” coatings using conventional magnetron sputtering, since the high bias potentials required to produce dense films often result in substrate damage. “Unbalanced” magnetron sputtering may offer a low energy alternative since the ion-to-deposited-atom ratio can be greatly increased, permitting the ion-bombardment energy to be reduced to <200 eV, without sacrificing film density, hardness, or adhesion. As has been demonstrated previously, ion energy can have a profound effect on film texture, but what affect the “substitution” of ion flux for ion energy will have on film texture has not been determined. In this work, TiN films were deposited onto M2 steel via “unbalanced” magnetron sputtering in an attempt to correlate changes in film texture and film stress, with ion energy and flux.  相似文献   

19.
Aluminum-doped zinc oxide films exhibiting a rough surface morphology are deposited on glass substrates utilizing expanding thermal plasma. Spectroscopic ellipsometry is used to evaluate optical and electronic film properties. The presence of aluminum donors in doped films is confirmed by a shift in the zinc oxide bandgap energy from 3.32 to 3.65 eV. In combination with transmission reflection measurements in the visible and NIR ranges, charge carrier densities, optical mobilities, and film resistivities have been obtained from the free carrier absorption. Film resistivities are consistent with direct measurements, values as low as 6.0×10−4 ω cm have been obtained. The interdependence of electrical conductivity, film composition, and film morphology is addressed.  相似文献   

20.
The variation of the optical characteristics of thin films of oxidized porous silicon as a function of the preparation regime and subsequent heat treatment is investigated by ellipsometry. It is shown that the refractive index, optical thickness, and extinction coefficient of porous silicon films decrease monotonically, but the film thickness increases as the degree of oxidation of the silicon base layer increases. An analysis of the film thickness as a function of the degree of oxidation shows that it differs very little from the same dependence for the nonporous film. The composition of the films is determined from the measured refractive index at a wavelength λ=632.8 nm by means of curves calculated on the basis of the three-component Bruggeman model of the effective medium for layers with different initial porosities. Fiz. Tekh. Poluprovodn. 33, 1264–1270 (October 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号