首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this paper, a survivable routing algorithm is proposed for shared segment protection (SSP), called optimal self-healing loop allocation (OSHLA), which dynamically allocates spare capacity for a given working lightpath in mesh wavelength-division-multiplexing (WDM) networks with partial wavelength conversion capability. Two novel graph transformation approaches, namely graph of cycles and wavelength graph of paths, are introduced to solve this problem, in which the task of survivable routing is formulated as a series of shortest path searching processes. In addition to an analysis on the computation complexity, a suite of experiments is conducted to verify OSHLA on four networks with different topologies and traffic loads. We find that the blocking probability and computation complexity are dominated by the upper bound on the length of the working and protection segments. Comparison is made between OSHLA and four other reported schemes in terms of blocking probability. The results show that OSHLA can achieve the lowest blocking probability under the network environment of interest. We conclude that OSHLA provides a generalized framework of survivable routing for an efficient implementation of SSP in mesh WDM partial wavelength convertible networks. With OSHLA, a compromise is initiated by manipulating the upper bound on the length of working and protection segments such that the best performance-computation complexity gain can be achieved.  相似文献   

2.
This paper investigates the problem of protecting multicast sessions in mesh wavelength‐division multiplexing (WDM) networks against single link failures, for example, a fiber cut in optical networks. First, we study the two characteristics of multicast sessions in mesh WDM networks with sparse light splitter configuration. Traditionally, a multicast tree does not contain any circles, and the first characteristic is that a multicast tree has better performance if it contains some circles. Note that a multicast tree has several branches. If a path is added between the leave nodes on different branches, the segment between them on the multicast tree is protected. Based the two characteristics, the survivable multicast sessions routing problem is formulated into an Integer Linear Programming (ILP). Then, a heuristic algorithm, named the adaptive shared segment protection (ASSP) algorithm, is proposed for multicast sessions. The ASSP algorithm need not previously identify the segments for a multicast tree. The segments are determined during the algorithm process. Comparisons are made between the ASSP and two other reported schemes, link disjoint trees (LDT) and shared disjoint paths (SDP), in terms of blocking probability and resource cost on CERNET and USNET topologies. Simulations show that the ASSP algorithm has better performance than other existing schemes.  相似文献   

3.
In this paper, we propose a novel approach of survivable routing for segment shared protection (SSP) in mesh wavelength division multiplexing networks with partial wavelength conversion capability, with which spare capacity is allocated dynamically for a given working lightpath. The survivable routing process is formulated into a shortest path searching problem on the transferred graph of cycles (TGC) and wavelength graph of paths (WGP).  相似文献   

4.
Shared segment protection (SSP), compared with shared path protection (SPP), and shared link protection (SLP), provides an optimal protection configuration due to the ability of maximizing spare capacity sharing, and reducing the restoration time in cases of a single link failure. This paper provides a thorough study on SSP under the GMPLS-based recovery framework, where an effective survivable routing algorithm for SSP is proposed. The tradeoff between the price (i.e., cost representing the amount of resources, and the blocking probability), and the restoration time is extensively studied by simulations on three networks with highly dynamic traffic. We demonstrate that the proposed survivable routing algorithm can be a powerful solution for meeting stringent delay upper bounds for achieving high restorability of transport services. This can significantly improve the network reliability, and enable more advanced, mission critical services in the networks. The comparison among the three protection types further verifies that the proposed scheme can yield significant advantages over shared path protection, and shared link protection.  相似文献   

5.
This paper proposes a novel failure recovery framework for multi-link shared risk link group (SRLG) failures in optical mesh networks, called failure presumed protection (FPP). The proposed framework is characterized by a failure dependent protection (FDP) mechanism where the optical layer in-band failure identification and restoration tasks for route selection are jointly considered. FPP employs in-band monitoring at each node to obtain on-off status of any working lightpath in case the lightpath is terminated at (or traversing through) the node. Since the locally available failure status at a node may not be sufficient for unambiguous failure localization, the proposed framework reroutes the interrupted lightpaths in such a way that all the suspicious links which do not have 100% restorability under any SRLG failure are kept away. We claim that this is the first study on FDP that considers both failure localization and FDP survivable routing. Extensive simulations are conducted to examine the proposed FPP method under various survivable routing architectures and implementations. The results are further compared with a large number of previously reported counterparts. We will show that the FPP framework can overcome the topological limitation which is critical to the conventional failure independent protection method (e.g., shared path protection). In addition, it can be served as a viable solution for FDP survivable routing where failure localization is considered.  相似文献   

6.
This paper focuses on the survivable routing problem in WDM mesh networks where the objective is to minimize the total number of wavelengths used for establishing working and protection paths in the WDM networks. The past studies for survivable routing suffers from the scalability problem when the number of nodes/links or connection requests grows in the network. In this paper, a novel path-based shared protection framework, namely inter group shared protection (I-GSP), is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy. Optimization is performed on these PGs such that sharing of protection wavelengths is considered not only inside a PG, but between the PGs. Simulation results show that I-GSP based integer linear programming model, namely, ILP-II solves the networks in a reasonable amount of time for which a regular integer linear programming formulation, namely, ILP-I becomes computationally intractable. For most of the cases the gap between the optimal solution and the ILP-II stays within 6%. The proposed ILP-II model yields a scalable solution for the capacity planning in the survivable optical networks based on the proposed I-GSP protection architecture.  相似文献   

7.
Provides the results of an economic study on the use of SONET digital cross-connect systems (DCS) to provide survivable transmission network architectures in local exchange networks. Three fundamental survivable transmission technologies are considered: (1) a SONET self-healing ring, (2) a SONET point-to-point fiber system with 1:1 automatic protection switching and diverse routing of protection facilities, and (3) a DCS mesh with automatic DCS restoration (rerouting) protection. These three technologies are used in various combinations to form six survivable network alternatives for evaluation. Two local exchange carrier (LEC) networks are used (a 15 node network and a 53 node network) and demand, network connectivity, and unit equipment cost sensitivities are evaluated on these alternatives. In addition, the survivability of each alternative in the event of a major node failure is calculated. The motivation for the study is to determine the viability of DCS-based survivable network architectures and, in particular, the viability of SONET DCS with integrated optical terminations. The study has two objectives: (1) given a specific survivable network technology, under what conditions is it economical to place a broadband DCS (B-DCS) in a central office as opposed add-drop multiplexers (ADM); and (2) which survivable technologies with B-DCS are economical, and under what conditions. The authors conclude that the most cost-effective networks consist of “hybrids” of SONET point-to-point, ring, and mesh technologies, and that the B-DCS is economically viable for interconnection between these technologies  相似文献   

8.
Novel algorithms for shared segment protection   总被引:8,自引:0,他引:8  
The major challenges in designing survivable schemes are how to allocate a minimal amount of spare resources (e.g., bandwidth) using fast (e.g., polynomial-time) algorithms, and, in case a failure occurs, to be able to recover quickly from it. All existing approaches invariably make tradeoffs. We propose novel shared segment protection algorithms which make little or no compromise . We develop an elegant integer linear programming (ILP) model to determine an optimal set of segments to protect a given active path. Although the ILP approach is useful for a medium-size network, it is too time consuming for large networks. Accordingly, we also design a fast heuristic algorithm based on dynamic programming to obtain a near-optimal set of segments. Although the heuristic algorithm has a polynomial time complexity, it can achieve a bandwidth efficiency as high as some best-performing shared path protection schemes and, at the same time, much faster recovery than these shared path protection schemes. The proposed scheme is also applicable to a wide range of networking technologies, including Internet Protocol and wavelength-division multiplexing networks under the generalized multiprotocol label switched framework.  相似文献   

9.
In this paper, we study the dynamic survivable routing problem, both in optical networks without wavelength conversion and in optical networks with sparse wavelength conversion, and propose a novel hybrid algorithm for it based on the combination of mobile agents technique and genetic algorithms (GA). By keeping a suitable number of mobile agents in the network to cooperatively explore the network states and continuously report cycles (that are formed by two disjoint-link routes) into the routing tables, our new hybrid algorithm can promptly determine the first population of cycles for a new request based on the routing table of its source node, without the time consuming process associated with current GA-based lightpath protection schemes. We further improve the performance of our algorithm by introducing a more advanced fitness function that is suitable for both the above networks. Extensive simulation studies on the ns-2 network simulator show that our hybrid algorithm achieves a significantly lower blocking probability than the conventional survivable routing algorithms for all the cases we studied.  相似文献   

10.
In this paper, the authors focus on studying the problem of survivable routing provisioning to prevent single link failure in wavelength-division-multiplexing (WDM) mesh networks, and propose a novel protection scheme called mixed shared path protection (MSPP). With MSPP, the authors define three types of resources: 1) primary resources that can be used by primary paths; 2) spare resources that can be shared by backup paths; and 3) mixed resources that can be shared by both the primary and the backup paths. In the proposed protection scheme, each connection is assigned a primary path and a link disjoint backup path. Differing from pervious protection schemes, MSPP allows some primary paths and backup paths to share the common mixed resources if the corresponding constraints can be satisfied. In this paper, the authors consider three types of path-based protection schemes, i.e., dedicated path protection (DPP), shared path protection (SPP), and MSPP, and evaluate their performance for both the static and the dynamic provisioning problems. Simulation results show that MSPP outperforms DPP and SPP.  相似文献   

11.
This paper proposes a suite of approaches to solve the survivable routing problem with shared protection. We first define in mathematics the maximum extent of resource sharing for a protection path given the corresponding working path according to the current network link-state. Then the problem of solving the least-cost working & protection path-pair (in terms of the sum of the cost) is formulated into an Integer Linear Programming process. Due to the dependency of the protection path on its working path, however, the formulation is not scalable with the network size, and takes an extra effort to solve. Therefore, we introduce two heuristic algorithms, called Iterative Two-Step-Approach (ITSA) & Maximum Likelihood Relaxation (MLR), which aim to explore the approximating optimal solutions with less computation time. We evaluate the performance of the proposed schemes, and make a comparison with some reported counterparts. The simulation results show that the ITSA scheme, with a properly defined tolerance to optimality, can achieve the best performance at the expense of more computation time. On the other hand, MLR delivers a compromise between computation efficiency & performance.  相似文献   

12.
In this paper, we study routing and wavelength assignment of connection requests in survivable WDM optical mesh networks employing shared path protection with partial wavelength conversion while 100% restorability is guaranteed against any single failures. We formulate the problem as a linear integer program under a static traffic model. The objective is to minimize the total cost of wavelength-links and wavelength converters used by working paths and protection paths of all connections. A weight factor is used which is defined as the cost ratio of a wavelength converter and a wavelength-link. Depending on the relative cost of bandwidth and wavelength conversion, the optimization objective allows a proper tradeoff between the two. The proposed algorithm, the shortest-widest-path-first (SWPF) algorithm, uses a modified Dijkstra's algorithm to find a working path and a protection path for each connection request in the wavelength graph transformed from the original network topology. When there are multiple candidate paths that have the same minimum total cost, the path along which the maximum number of converters used at each node is minimized is chosen by the SWPF algorithm. We have evaluated the effectiveness of the proposed algorithm via extensive simulation. The results indicate that the performance of the proposed algorithm is very close to that of the optimal solutions obtained by solving the ILP formulation and outperforms existing heuristic algorithms in terms of total number of converters used and the maximum number of converters required at each node in the network. The proposed algorithm also achieves slightly better performance in terms of total cost of wavelength-links and converters used by all connections. We also investigated shared path protection employing converter sharing. The results show that the technique can reduce not only the total number of converters used in the network but also the maximum number of converters required at each node, especially when a large number of converters are needed in the network. In this study, although the ILP formulation is based on static traffic, the proposed algorithm is also applicable to routing dynamic connection requests.  相似文献   

13.
A Study of Path Protection in Large-Scale Optical Networks   总被引:1,自引:1,他引:0  
We consider the problem of designing a network of optical cross-connects (OXCs) which provides end-to-end lightpath services to large numbers of client nodes, under the requirement that the network will survive any single-link failure. Our main objective is to quantify the additional resource requirements of implementing path protection schemes over a network with no survivability properties. To this end, we present heuristic routing and wavelength assignment algorithms for dedicated path protection and two variants of shared path protection, and integrate them into the physical and logical topology design framework we developed in an earlier study. We apply our heuristics to networks with up to 1000 client nodes, with a number of lightpaths that is an order of magnitude greater than the number of clients, and for a wide range of values for system parameters such as the number of wavelengths per fiber, the number of optical transceivers per client node, and the number of ports per OXC. Our results provide insight into the relative resource requirements of dedicated and shared path protection schemes. We also find that, using shared path protection schemes, it is possible to build cost-effective survivable networks that provide rich connectivity among client nodes with only a modest additional amount of resources over a network with no survivability properties.  相似文献   

14.
Dynamic Survivability in WDM Mesh Networks Under Dynamic Traffic   总被引:3,自引:0,他引:3  
Network survivability is a crucial requirement in WDM mesh networks. In this paper, we systematically consider the problem of dynamic survivability with dynamic single link failure in WDM networks under dynamic traffic demands. Specifically, we investigate various protection schemes, such as dedicated path protection (DPP), shared path protection (SPP), dedicated link protection (DLP), shared link protection (SLP), and two restoration schemes, path restoration (PR) and link restoration (LR). Moreover, two new shared protection methods are proposed, i.e., SRLG-based shared link protection (SRLG-SLP) and SRLG-based shared path protection (SRLG-SPP). The SRLG (shared risk link group) constraint defines the availability of protection resources to a working path, which requires that any two working paths sharing the same risk of failure (or in the same SRLG) cannot share the same protection resources. Furthermore, in our study, we consider a more practical dynamic single-link failure model, in which the link-failure-interarrival time and link-failure-holding time are considered as two independent parameters. Based on this link-failure model, extensive simulations are done to analyze and compare the dynamic survivable performance of various protection and restoration schemes. Resource utilization, protection efficiency, restoration efficiency, and service disruption ratio are employed as survivable performance metrics versus traffic load, link-failure frequency, and link-failure reparation time to evaluate the survivable performance. Many meaningful results are given. In addition, we show that the developed SRLG-SLP and SRLG-SPP protection schemes perform very well in terms of protection efficiency and service disruption ratio, while sacrificing some performance in terms of resource utilization.  相似文献   

15.
In this work, we have proposed and studied efficient online algorithms for shared path protection under dynamic traffic conditions in survivable WDM optical mesh networks. Given a connection request, routing and wavelength assignment of a working path and a protection path for the request is formulated as two integer linear programs based on shared and dedicated path protection, respectively. The objective is to minimize the total cost of additional resources used by the working path as well as the protection path to accommodate a new connection request. We then devise two resource efficient online algorithms using pre-computed candidate routes. The first algorithm uses one candidate working path and one candidate protection path for each newly arrived connection request while the second algorithm may use multiple candidate working paths and/or multiple candidate protection paths. The selection of a pair of paths from candidate routes as well as the assignment of appropriate wavelengths to accommodate a connection request is then jointly considered to minimize the total cost of additional resources. The solutions to the ILP formulations serve as the baseline for evaluating the performance of the proposed algorithms. We have evaluated the effectiveness of the proposed online algorithms via extensive simulations in terms of the connection blocking probability and the revenue earnings improved over the dedicated path protection approach. Our simulations indicate that our proposed computationally efficient online algorithms are able to provide 100% restorability against single failures with a resource efficiency comparable to that of the optimal shared path protection. The results also show that a small increase in the number of candidate working paths or protection paths (from 1 to 3) provides better performance, but a further increase does not improve the performance significantly. Therefore, a proper balance can be struck to achieve both satisfactory performance and efficient computation.The work reported in this paper was supported in part by AFRL, the U.S. Department of Energy Early Career Award DE-FG02-03ER25580, and a DAGSI graduate scholarship. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the funding agencies.  相似文献   

16.
基于共享风险链路组(SRLG,shared risk link group)和P圈(P-Cycles,pre-configured cycles)的概念,研究了SRLG约束下p-Cycles的构造问题,引入SRLG完全分离p-Cycles的概念,基于SRLG的简单p-Cycles构造算法和获得更多p-Cycles的SRLG约束下的圈扩展算法提出的SRLG约束下的p-Cycles配置算法(SCAA),实现在光网络中优化配置SRLG完全分离的p-Cycles。通过计算机仿真表明,SCAA最小容量配置方案可以预留更少的网络资源,而SCAA优化容量配置方案可以实现p-Cycles快速配置容量,SCAA算法可以保障配置SRLG分离p-Cycles的高保护效能,使网络具备单SRLG故障恢复能力。  相似文献   

17.
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risk-link-group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.  相似文献   

18.
Supporting fast restoration for general mesh topologies with minimal network over-build is a technically challenging problem. Traditionally, ring-based SONET networks have offered close to 50 ms restoration at the cost of requiring 100% over-build. Recently, fast (local) reroute has gained momentum in the context of MPLS networks. Fast reroute, when combined with pre-provisioning of protection capacities and bypass tunnels, enables faster restoration times in mesh networks. Pre-provisioning has the additional advantage of greatly simplifying network routing and signaling. Thus, even for protected connections, online routing can now be oblivious to the offered protection, and may only involve single shortest path computations. In this paper, we are interested in the problem of reserving the least amount of the network capacity for protection, while guaranteeing fast (local) reroute-based restoration for all the supported connections. We show that the problem is NP-complete, and we present efficient approximation algorithms for the problem. The solution output by our algorithms is guaranteed to use at most twice the protection capacity, compared to any optimal solution. These guarantees are provided even when the protection is for multiple link failures. In addition, the total amount of protection capacity reserved by these algorithms is just a small fraction of the amount reserved by existing ring-based schemes (e.g., SONET), especially on dense networks. The presented algorithms are computationally efficient, and can even be implemented on the network elements. Our simulation, on some standard core networks, show that our algorithms work well in practice as well  相似文献   

19.
20.
Network survivability is becoming more and more important for the plenty of information each single fiber carries. Extra network resources are needed to increase network survivability level. In this paper, we investigate the problem of how to augment the network topology with adding new links and allocate spare capacity to maximize the service restorability against node failures in SDH/SONET mesh networks. A scheme called maximal node-disjoint backup paths provisioning with topology augmentation is proposed to tackle the problem, and another scheme called globally optimized path provisioning with topology augmentation, which allows adjusting the existing working paths of network flows, is investigated to optimize the augmented network globally. Both schemes are formulated as mixed integer linear programming models. Furthermore, heuristic algorithms are investigated to be implemented in software. Three algorithms, i.e., added links searching method, successive maximal survivable routing method, and random sequence routing convergence method, are designed and compared. Simulation results show the effectiveness of the algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号