首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
结合多层结构模型以及柯西色散公式,给出一种由透射谱提取微晶硅锗(μc-Si1-x Gex:H)薄膜光学常数的Matlab方法。与Swanepeol方法、PUMA(pointwise unconstrained minimization approach)方法相比,Matlab法通过透射率极值的位置而非幅值计算折射率,能够避免幅值大小偏差所造成的影响,得到更准确的光学常数,拟合精度能提高1个数量级。计算所得不同Ge含量的光学常数表明,μc-Si1-x Gex:H在整个波长范围内有更高的吸收系数和折射率,并且二者随Ge含量增加而增加。由ASA(advanced semiconductor analysis)进一步计算表明,相对于μc-Si:H电池,当本征吸收层较薄时相同厚度的μc-Si1-x Gex:H电池从400nm开始即能表现出更高的量子效率(QE)响应,当本征吸收层较厚时相同厚度的μc-Si1-x Gex:H电池在近红外区域的QE响应依然优势明显。并且,在获得相同电流密度的情况下,μc-Si1-x Gex:H电池能够明显降低本征吸收层厚度,因而能够有效降低Si基薄膜太阳电池的制造成本。  相似文献   

2.
用软件AMPS研究了一种新型结构的太阳能电池,通过研究界面复合速率,p型层厚度,本征层厚度,n型层厚度和掺杂浓度的变化对转换效率的影响。结果表明:用a-SiC:H 作为 p-a-SiC:H/i-a-Si:H/n-μc-Si电池的窗口层在理论上可行,并且性能更优。这一结果为非晶硅电池效率的提高提供了新思路。  相似文献   

3.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,在125℃的低温条件下,沉积了一系列不同厚度的本征微晶硅(μc-Si)薄膜。对材料的光电特性和结构特性的测试结果表明,低温条件下制备的μc-Si薄膜具有较厚的非晶孵化层,并且纵向结构演变较为明显。采用梯度H稀释技术,在沉积过程中不断降低H稀释度,改善了μc-Si薄膜的纵向均匀性。将此技术应用于非晶硅(a-Si)/μc-Si叠层电池的μc-Si底电池,在聚对苯二甲酸乙二醇酯(PET)塑料衬底上制备出初始效率达到6.0%的a-Si/μc-Si叠层电池。  相似文献   

4.
RF-PECVD法制备高Ge含量微晶Si-Ge薄膜及太阳电池   总被引:4,自引:4,他引:0  
采用射频等离子体增强化学气相沉积 (RF-PECVD) 技术,研究了衬底温度对高Ge 含量(≈50%)微晶Si-Ge(μc-SiGe:H)薄膜结构特性 和电学特性的影响。结 果表明:较低的衬底温度会抑制 μc-SiGe:H薄膜(220)晶向的择优生长;而当衬底温度过高 时,μc-SiGe:H薄膜的O含量和微 结构因子较大。在衬底温度为200℃时,获得了光电特性和结构特性 较优的高Ge含 量μc-SiGe:H薄膜。将优化好的μc-SiGe:H薄膜应用到电池中,在本征层 为600nm的情况下, 获得了转换效率为3.31%(Jsc=22.5mA/cm2,Voc=0.32V,FF=0.46)的单结μc-Si Ge:H电池,电池在1100nm处的光谱响应 达5.49%。  相似文献   

5.
为充分利用太阳光谱能量,在玻璃衬底的PIN型a-Si/a-SiGe电池中直接引入了微晶硅(μc-Si:H)底电池.从透明导电氧化物(TCO)衬底的光透过率估算了PIN型a-Si:H/a-SiGe:H/μc-Si:H三结电池实现高转化效率的可行性.通过调整μc-Si:H底电池厚度考察三结电池的性能变化,结果发现,受中间电...  相似文献   

6.
为获得单室沉积高效微晶硅(μc-Si)太阳电池,首先采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术制备了不同沉积条件下的本征μc-Si薄膜.通过对材料的结构和电学输运特性的研究,借鉴分室沉积的器件质量级μc-Si材料的经验,选取合适的本征层和P种子层处理B污染的技术,在单室中制备出光电转换效率为6.23%(1 cm2)的单结μc-Si电池.  相似文献   

7.
采用热丝化学气相沉积技术(HWCVD),系统地研究了纳米晶硅层(尤其是本征缓冲层)的晶化度以及晶体硅表面氢处理时间对nc-Si∶H/c-Si异质结太阳能电池性能的影响,通过C-V和C-F测试分析了不同氢处理时间和本征缓冲层氢稀释度对nc-Si∶H/c-Si界面缺陷态的影响,运用高分辨透射电镜观察了不同的本征缓冲层晶化度的nc-Si∶H/c-Si异质结太阳能电池的界面,优化工艺参数,在p型CZ晶体硅衬底上制备出转换效率为17.27%的n-nc-Si∶H/i-nc-Si∶H/p-c-Si异质结电池.  相似文献   

8.
采用热丝化学气相沉积技术(HWCVD),系统地研究了纳米晶硅层(尤其是本征缓冲层)的晶化度以及晶体硅表面氢处理时间对nc-Si∶H/c-Si异质结太阳能电池性能的影响,通过C-V和C-F测试分析了不同氢处理时间和本征缓冲层氢稀释度对nc-Si∶H/c-Si界面缺陷态的影响,运用高分辨透射电镜观察了不同的本征缓冲层晶化度的nc-Si∶H/c-Si异质结太阳能电池的界面,优化工艺参数,在p型CZ晶体硅衬底上制备出转换效率为17.27%的n-nc-Si∶H/i-nc-Si∶H/p-c-Si异质结电池.  相似文献   

9.
本征层厚度对非晶硅叠层电池电流匹配的影响   总被引:1,自引:0,他引:1  
采用PECVD技术制备a-Si:H/a-Si:H叠层双结非晶硅电池,研究了本征层厚度对叠层电池功率及短路电流的影响。通过调节顶电池和底电池本征层的沉积时间,得到不同厚度比例的本征层(di1:di2),经过实验对比发现I层总体厚度为650 nm,di1:di2=1:5时得到的电池组件短路电流(Isc)和最大功率(Pmax)都是最大值。此时叠层电池的电流得到了较好的匹配,实现了工艺参数的优化。  相似文献   

10.
采用高压高功率的超高频等离子体增强化学气相沉积(VHF-PECVD)技术,在腐蚀后的7059玻璃、低晶化和高晶化的微晶硅(μc-Si:H)p型材料3种衬底上,通过改变沉积时间的方法,高速(沉积速率约为1 nm/s)沉积了不同厚度的μc-Si:H薄膜材料.测试其表面形貌及晶化率,比较了不同衬底上高速生长的μc-Si:H薄膜生长机制及微结构的差异,最后得到适于高速沉积pin μc-Si:H太阳电池的μc-Si:H p型材料应具备的条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号