首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
陈刚 《半导体学报》2005,26(13):273-276
对不同工艺条件下的NiCr/4H-SiC欧姆接触特性进行了对比研究,得到了良好欧姆接触的最佳工艺条件,为SiC MESFET器件的实现奠定了基础. 文中介绍了欧姆接触的工艺流程,并通过TLM方法测量特征接触电阻率,测得NiCr/4H-SiC的最佳特征接触电阻率达到1.24e-5Ω·cm2,能够很好地满足SiC MESFET器件的需要.  相似文献   

2.
陈刚 《半导体学报》2005,26(z1):273-276
对不同工艺条件下的NiCr/4H-SiC欧姆接触特性进行了对比研究,得到了良好欧姆接触的最佳工艺条件,为SiC MESFET器件的实现奠定了基础.文中介绍了欧姆接触的工艺流程,并通过TLM方法测量特征接触电阻率,测得NiCr/4H-SiC的最佳特征接触电阻率达到1.24×10-5Ω·cm2,能够很好地满足SiC MESFET器件的需要.  相似文献   

3.
对不同工艺条件下的NiCr/4H-SiC欧姆接触特性进行了对比研究,得到了良好欧姆接触的最佳工艺条件,为SiC MESFET器件的实现奠定了基础.文中介绍了欧姆接触的工艺流程,并通过TLM方法测量特征接触电阻率,测得NiCr/4H-SiC的最佳特征接触电阻率达到1.24×10-5Ω·cm2,能够很好地满足SiC MESFET器件的需要.  相似文献   

4.
实现SiC器件欧姆接触常规工艺需要800~1200℃的高温退火.研究了n型4H-SiC低温制备Ti欧姆电极的工艺及其基本电学特性.通过氢等离子体处理4H-SiC的表面,沉积Ti后可直接形成欧姆接触,室温下比接触电阻率ρc为2.25×10-3 Ω·m2(ρc由圆形传输线模型CTLM测得),随着合金温度的升高,其欧姆特性逐渐增强,400℃合金后获得最低的比接触电阻率ρc为2.07×10-4 Ω·m2.采用X射线衍射(XRD)确定金属/n-SiC界面反应时形成的相,以分析电学性质与微观结构间的联系.最后讨论了低温欧姆接触的形成机制.  相似文献   

5.
4H-SiC欧姆接触与测试方法研究   总被引:1,自引:1,他引:0  
主要针对不同金属和工艺条件下的4H-SiC欧姆接触特性进行对比研究,形成4H-SiC的优良欧姆接触的最佳条件。通过TLM方法结合四探针测量得到特征接触电阻率,测得NiCr和Ni与4H-SiC的最佳特征接触电阻率分别达到ρc=9.02×10-6Ω.cm2,ρc=2.22×10-7Ω.cm2,能够很好满足SiC器件的需要。  相似文献   

6.
借助二次离子质谱法分析了注入的钒离子在碳化硅中的分布.即使经过1650℃的高温退火,钒在碳化硅中的再扩散也不显著.退火并没有导致明显的钒向碳化硅表面扩散形成堆积的现象,由于缺少钒的补偿作用,表面薄层的自由载流子浓度保持不变.采用线性传输线模型测量了钒注入n型4H-SiC上的Ni基接触电阻,在1050℃下,在氮、氢混合气体中退火10min,形成的最低比接触电阻为4.4×10-3Ω·cm2.金属化退火后的XRD分析结果表明,镍、碳化硅界面处形成了Ni2Si和石墨相.观测到的石墨相是由于退火导致C原子外扩散并堆积形成,同时在碳化硅表面形成C空位.C空位可以提高有效载流子浓度,降低势垒高度并减小耗尽层宽度,对最终形成欧姆接触起到了关键作用.  相似文献   

7.
利用电子回旋共振(ECR)氢等离子体处理n型4H-SiC(0.5~1.5×1019cm-3)表面,采用溅射法制备碳化钛(TiC)电极,并在低温(<800℃)条件下退火。直线传输线模型(TLM)测试结果表明,TiC电极无需退火即可与SiC形成欧姆接触,采用ECR氢等离子体处理能明显降低比接触电阻,并在600℃退火时获得了最小的比接触电阻2.45×10-6Ω.cm2;当退火温度超过600℃时,欧姆接触性能开始退化,但是比接触电阻仍然低于未经氢等离子体处理的样品,说明ECR氢等离子体处理对防止高温欧姆接触性能劣化仍有明显的效果。利用X射线衍射(XRD)分析了不同退火温度下TiC/SiC界面的物相组成,揭示了电学特性与微观结构的关系。  相似文献   

8.
从理论和实验的角度研究了n型4H-SiC上的多晶硅欧姆接触.在P型4H-SiC外延层上使用P+离子注入来形成TLM结构的n阱.使用LPCVD淀积多晶硅并通过P+离子注入及扩散进行掺杂,得到的多晶硅方块电阻为22Ω/□.得到的n+多晶硅/n-SiC欧姆接触的比接触电阻为3.82×10-5Ω·cm2,接触下的注入层的方块电阻为4.9kΩ/□.对n+多晶硅/n-SiC欧姆接触形成的机理进行了讨论.  相似文献   

9.
研究了Ni基n型SiC材料的欧姆接触的形成机理,认为合金化退火过程中形成的C空位(Vc)而导致的高载流子浓度层对欧姆接触的形成起了关键作用。给出了欧姆接触的能带结构图,提出比接触电阻ρC由ρC1和ρC2两部分构成。ρC1是Ni硅化物与其下在合金化退火过程中形成的高载流子浓度层间的比接触电阻,ρC2则由高载流子浓度层与原来SiC有源层之间载流子浓度差形成的势垒引入。该模型较好地解释了n型SiC欧姆接触的实验结果,并从衬底的掺杂水平、接触金属的选择、合金化退火的温度、时间、氛围等方面给出了工艺条件的改进建议。  相似文献   

10.
研究了热退火条件下Au/Ti/Ni-4H-SiC欧姆接触形成机制.通过950 ℃下的快速热退火形成的最低欧姆接触电阻为2.765×10-6 Ω·cm2.SIMS分析表明退火过程中NiSi化合物的形成会带来SiC内部多余C原子的溢出,并在接触面上与Ti形成间隙化合物TiC.这一过程造成接触表面存在由大量C空位形成的缺陷层从而增强了表面间接隧穿.通过界面能带结构图直观地解释了欧姆接触在热退火条件下的形成机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号