首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
In this paper, an internally compensated low dropout (LDO) voltage regulator based on the Flipped Voltage Follower (FVF) is proposed. By means of capacitive coupling and dynamic biasing, the transient response to both load and line variations is enhanced. The proposed circuit has been designed and fabricated in a standard 0.5 µm CMOS technology. Experimental results show that the proposed circuit features a line and a load regulation of 132.04 µV/V and 153.53 µV/mA, respectively. Moreover, the output voltage spikes are kept under 150 mV for a 2 V-to-5 V supply variation and for 1 mA-to-100 mA load variation, both in 1 µs.  相似文献   

2.
A fully on-chip 1-μW fast-transient response capacitor-free low-dropout regulator (LDO) using adaptive output stage (AOS) is presented in this paper in standard 0.13-μm CMOS process. The AOS circuit is proposed to deliver extra four times of output current of the operational amplifier at medium to heavy load to extend the bandwidth of the LDO and enhance the slew rate at the gate of the power transistor. And the AOS circuit is shut off at light load to reduce the quiescent current and maintain the stability without requiring area-consuming on-chip capacitor. Meanwhile, the proposed AOS circuit introduces VOUT offset at medium to heavy load to counteract the VOUT drop, which is caused by ILOAD increase. Hence, transient performances of LDO and VOUT drop between light load and full load are improved significantly with 1.1-μA quiescent current at light load. From the post simulation results, the LDO regulates the output voltage at 0.7 V from a 0.9-V supply voltage with a 100-mA maximum load current. The undershoot, the overshoot and the recovery time of the proposed LDO with ILOAD switching from 50 μA to 100 mA in 1 μs are about 130 mV, 130 mV and 1.5 μs, respectively. And the VOUT drop between light load and full load reduces to 0.16 mV.  相似文献   

3.
A low power output-capacitor-free low-dropout (LDO) regulator, with subthreshold slew-rate enhancement technique, has been proposed and simulated using a standard 0.18 μm CMOS process in this paper. By utilizing such a technique, proposed LDO is able to achieve a fast transient response. Simulation results verify that the recovery time is as short as 7 μs and the maximum undershoot and overshoot are as low as 55 mV and 30 mV, respectively. In addition, the slew-rate enhancement circuit works in the subthreshold region at steady state, and proposed LDO consumes a 46.4-μA quiescent current to provide a maximum 100-mA load with a minimum 0.2-V dropout voltage. Besides, excellent line and load regulations are obtained and the values are 0.37 mV/V and 2 μV/mA, respectively.  相似文献   

4.
李演明  来新泉  贾新章  曹玉  叶强 《电子学报》2009,37(5):1130-1135
 设计了一种具有快速瞬态响应能力的低漏失稳压器,利用提出的一种瞬态响应加速(Transient Response Enhancement,TRE)电路,有效地提高了稳压器的瞬态响应速度,而且瞬态响应速度的提高并不增加静态电流.设计的LDO电路采用0.5μm标准CMOS工艺投片验证,芯片面积为0.49mm2.该LDO空载下的静态电流仅23μA,最大带载200mA.在1μF输出电容、200mA/100ns负载阶跃变化时的最大瞬态输出电压变化量小于3.5%.  相似文献   

5.
An ultra-low power output-capacitorless low-dropout (LDO) regulator with a slew-rate-enhanced (SRE)circuit is introduced.The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging (or discharging) the gate capacitor quickly.In addition,a buffer with ultra-low output impedance is presented to improve line and load regulations.This design is fabricated by SMIC 0.18 μm CMOS technology.Experimental results show that,the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA.The output current range is from 10 μA to 200 mA and the corresponding variation of output voltage is less than 40 mV.Moreover,the measured line regulation and load regulation are 15.38 mV/V and 0.4 mV/mA respectively.  相似文献   

6.
A capacitor-free CMOS low-dropout(LDO)regulator for system-on-chip(SoC)applications is presented.By adopting AC-boosting and active-feedback frequency compensation(ACB-AFFC),the proposed LDO enhancement circuit is adopted to increase the slew rate and decrease the output voltage dips when the load current is suddenly switched from low to high.The LDO regulator is designed and fabricated in a 0.6/am CMOS process.The active silicon area is only 770×472μm2.Experimental results show that the total error of the output voltage due to line variation is less than ±0.1 97%.The load regulation is only 0.35 mV/mA when the load current changes fromoto 100mA.  相似文献   

7.
A low-power fast-transient output-capacitor-free low-dropout regulator (LDO) with high power-supply rejection (PSR) is presented in this paper. The proposed LDO utilizes a non-symmetrical class-AB amplifier as the input stage to improve the transient performances. Meanwhile, PSR enhancement circuit, which only consumes 0.2-µA quiescent current at light load, is utilized to form a feedforward cancellation path for improving PSR over wide frequency range. The LDO has been designed and simulated in a mixed signal 0.13-µm CMOS process. From the post simulation results, the LDO is capable of delivering 100-mA output current at 0.2-V dropout voltage, with 3.8-µA quiescent current at light load. The undershoot, the overshoot and the 1 % settling time of the proposed LDO with load current switching from 50 µA to 100 mA in 300 ns are about 100 mV, 100 mV and 1 µs, respectively. With the help of proposed PSR enhancement technique, the LDO achieves a PSR of ?69 dB at 100 kHz frequency for a 100-mA load current.  相似文献   

8.
交流提升与有源反馈补偿的无片外电容CMOS低压差稳压器   总被引:1,自引:1,他引:0  
A capacitor-free CMOS low-dropout (LDO) regulator for system-on-chip (SoC) applications is presented. By adopting AC-boosting and active-feedback frequency compensation (ACB-AFFC), the proposed LDO regulator, which is independent of an off-chip capacitor, provides high closed-loop stability. Moreover, a slew rate enhancement circuit is adopted to increase the slew rate and decrease the output voltage dips when the load current is suddenly switched from low to high. The LDO regulator is designed and fabricated in a 0.6 μm CMOS process. The active silicon area is only 770 × 472 μm2. Experimental results show that the total error of the output voltage due to line variation is less than ±0.197%. The load regulation is only 0.35 mV/mA when the load current changes from 0 to 100 mA.  相似文献   

9.
设计并实现了一种动态补偿、高稳定性的LDO.针对LDO控制环路稳定性随负载电流变化的特点,给出一种新颖的动态补偿电路.这种补偿电路能很好地跟踪负载电流的变化,从而使控制环路的稳定性几乎与负载电流无关.设计采用CSMC 0.5μm标准CMOS工艺,利用Cadence的EDA工具完成电路设计、版图绘制和流片测试,最终芯片面...  相似文献   

10.
Low-power analog driver based on a single-stage amplifier with an embedded current-detection slew-rate enhancement (SRE) circuit is presented. By developing a systematic way to design both the response time and optimal sizing of driving transistors in the SRE circuit, the SRE circuit can be controlled to turn on or turn off properly. In addition, the analog driver only dissipates low static power and its transient responses are significantly improved without transient overshoot when driving large capacitive loads. Implemented in a 0.6-/spl mu/m CMOS process, a current-mirror amplifier with the current-detection SRE circuit has achieved over 43 times improvement in both slew rate and 1% settling time when driving a 470-pF load capacitor. When the proposed analog driver is employed in a 50-mA CMOS low-dropout regulator (LDO), the resultant load transient response of the LDO has 2-fold improvement for the maximum load-current change, while the total quiescent current is only increased by less than 3%.  相似文献   

11.
A 3 A sink/source G_m-driven CMOS low-dropout regulator(LDO),specially designed for low input voltage and low cost,is presented by utilizing the structure of a current mirror G_m(transconductance)driving technique,which provides high stability as well as a fast load transient response.The proposed LDO was fabricated by a 0.5μm standard CMOS process,and the die size is as small as 1.0 mm~2.The proposed LDO dissipates 220μA of quiescent current in no-load conditions and is able to deliver up to 3 A of load current.The measured results show that the output voltage can be resumed within 2μs with a less than 1mV overshoot and undershoot in the output current step from-1.8 to 1.8 A with a 0.1μs rising and falling time at three 10μF ceramic capacitors.  相似文献   

12.
A high precision low dropout regulator (LDO) with nested feedback loops is proposed in this paper. By nesting a zero-tracking compensation loop inside of the negative feedback loop comprising an error amplifier, the independence of off-chip capacitor and effective series resistance (ESR) is ensured for different load currents and operating voltages. This circuit is designed and fabricated using a standard CMOS process. The die area is a . The measurement results show that the total error of the output voltage caused by line and load variations is less than ±3% in low quiescent current (Iddq) or low voltage scenarios. Besides, the smallest dropout of the LDO, 0.11 V, while the output current is 165 mA, the output load is and 20 in parallel.  相似文献   

13.
A high slew-rate amplifier with push-pull output driving capability is proposed to enable an ultra-low quiescent current (Iq ~ 1muA) low-dropout (LDO) regulator with improved transient responses. The proposed amplifier eliminates the tradeoff between small Iq and large slew-rate that is imposed by the tail-current in conventional amplifier design. Push-pull output stage is introduced to enhance the output driving ability. Small dropout voltage (Vbo) with large-size pass transistor and ultra-low Iq can thus be used to minimize power loss of LDO regulator without transient-response degradation. The proposed amplifier helps to improve stability of LDO regulators without using any on-chip and off-chip compensation capacitors. This is beneficial to chip-level power management requiring high-area efficiency. An LDO regulator with the proposed amplifier has been implemented in a 0.18- mum standard CMOS process and occupies 0.09 mm2. The LDO regulator can deliver 50-mA load current at 1-V input and ~ 100-mV VDO . It only consumes 1.2 muA Iq and is able to recover within ~ 4 mus even under the worst case scenario.  相似文献   

14.
王媛  汪西虎 《半导体技术》2022,47(2):145-151
为了延长便携式、可穿戴医疗设备的待机时间,设计了一种具有超低静态电流的低压差(LDO)线性稳压器。采用误差放大器与基准电路相结合的结构,在降低静态电流的同时减小芯片面积;其次,利用负载检测模块,降低了空载及轻载时过温保护和过流保护等模块的静态电流。采用自适应偏置电流技术来动态调整稳压环路各支路的工作电流以及零点频率补偿方式,解决了静态功耗与瞬态响应和环路带宽间的矛盾。该LDO线性稳压器采用0.35μm CMOS工艺进行流片加工,测试结果表明,该LDO线性稳压器静态电流为700 nA,最大负载电流为150 mA,轻载与满载跳变时上过冲电压为63 mV,下过冲电压为55 mV。  相似文献   

15.
In this paper, a new architecture of a fully integrated low-dropout voltage regulator (LDO) is presented. It is composed of hybrid architecture of NMOS/PMOS power transistors to relax stability requirements and enhance the transient response of the system. The LDO is capable of producing a stable output voltage of 1.1 V from 1.3 V single supply with recovery settling time about 680 nsec. It can supply current from 10 µA to 100 mA consuming quiescent current of 20.5 µA and 95 µA, respectively. It supports load capacitance from 0 to 50 pF with phase margin that increases from 43° at low load (10 µA) to 74° at high load (100 mA) and power supply rejection ratio (PSRR) less than −20 dB up to 100 kHz. The proposed LDO is designed in 130 nm CMOS technology and occupies an area of 0.11 mm2. Post layout simulations show better performance compared with other reported techniques.  相似文献   

16.
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC–DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC–DC converter has variable conversion ratios and synchronous controller that lets the DC–DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0–10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.  相似文献   

17.
在分析各种低压LDO结构的基础上,设计了一款新型的基于0.18 μm CMOS工艺的LDO低压降线性电压调整器。该LDO电路采用了折叠低压带隙和折叠共源共栅结构的运放,采用密勒补偿以保证整体LDO的稳定性。具有很低的输入/输出电压差、超低的静态电流,良好的负载调整能力、线性调整能力和良好的电源抑制特性,此外,还具有过温保护和短路保护电路,保证电路的安全工作。该电路配以简单外部设备即可为各种电子产品提供灵活、高效、可靠的电源解决方案,大大降低了设计成本。  相似文献   

18.
A high-performance current amplifier is proposed which is based on a folded-cascode transresistance amplifier and a low-distortion class AB current output stage. The loop gain of the transresistance amplifier exhibits a gain bandwidth product of 10 MHz and a DC gain as high as 100 dB which allows accurate closed-loop operations to be achieved. Despite the intrinsic low-linearity performance of current amplifiers with respect to their voltage amplifier counterpart, the proposed circuit provides an output current of 7 mA with a total harmonic distortion (THD) better than -55 dB while requiring only 200 μA of quiescent current for the output transistors. The circuit was fabricated in a 1.2 μm CMOS process, uses a 5 V power supply, and dissipates 4 mW  相似文献   

19.
为了解决无片外电容低压差线性稳压器(LDO)的瞬态响应性能较差的问题,采用跨导提高技术设计了一种高摆率的误差放大器.在误差放大器的基础上,通过电容将LDO的输出端耦合至电流镜构建瞬态增强电路,提升LDO的瞬态响应能力,且瞬态增强电路可以引入两个左半平面零点,改善环路的稳定性.同时,误差放大器采用动态偏置结构,进一步减小...  相似文献   

20.
We present a CMOS low-dropout voltage regulator with a high-speed NMOS compact driver suitable for supplying on-chip voltages for the digital core of a SoC. The LDO is part of a power management controller hardblock integrated within a microcontroller. The die area of the circuit implemented in a 90 nm CMOS process is only 0.054 mm2. Experimental results show that the developed LDO can supply up to 15 mA and it presents a very fast transient response, with a settling time of approximately 30 ns and a voltage drop of 200 mV when the load current changes from 100 nA to 9 mA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号