首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
热红外高光谱成像技术的研究现状与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
高光谱成像具有精细的光谱分辨能力,在热红外谱段实施高光谱成像对目标探测与识别有显著效果.与国外相比,我国在该领域的研究还相对薄弱,应用部门的研究主要基于国外数据,国内尚未有成熟的仪器.对国内外研究现状进行了详细调研,并结合目前国内已经布局的研究项目对该领域未来的发展进行了展望,对我国发展高性能空间红外光谱成像技术具有一定意义.  相似文献   

2.
红外高光谱成像仪的系统测试标定与飞行验证   总被引:1,自引:0,他引:1  
红外谱段是高光谱遥感中非常有用的波段,由于红外波段的能量小、焦平面探测器研制难、红外背景辐射大等原因,红外谱段的高光谱成像系统并不常见,目前仍然处于仪器发展阶段.本文介绍了一台机载热红外高光谱成像仪,它在8.0~12.5μm的光谱范围内可得到180个波段的光谱信息,光谱分辨率优于44 nm,光谱定标精度优于1 nm.仪器观测总视场14°,空间分辨率优于1 mrad,噪声等效温差优于0.2 K@300 K(平均).仪器于2015年5月开展了实验室辐射标定和光谱标定,并于2015年6月在中国浙江舟山开展了飞行试验,获取了指定区域的红外高光谱图像,处理结果表明红外高光谱数据立方体可以有效地反演地表温度和地表辐射率,反演的发射率曲线可以用于地物识别.  相似文献   

3.
在分析热红外高光谱成像系统主要技术参数之间的制约关系的基础上,针对热红外高光谱成像系统目标能量微弱、背景热辐射严重等难点,提出了几种有效抑制背景辐射的措施,并建立了一套高背景抑制的热红外高光谱推帚式成像实验装置,实现了地面试验成像.根据冷背景实验结果,分析了热红外高光谱成像系统的性能和各种影响因素的关系,并提出了系统性能优化的可行性.  相似文献   

4.
在分析热红外高光谱成像系统主要技术参数之间的制约关系的基础上,针对热红外高光谱成像系统目标能量微弱、背景热辐射严重等难点,提出了几种有效抑制背景辐射的措施,并建立了一套高背景抑制的热红外高光谱推帚式成像实验装置,实现了地面试验成像.根据冷背景实验结果,分析了热红外高光谱成像系统的性能和各种影响因素的关系,并提出了系统性能优化的可行性.  相似文献   

5.
介绍了机载热红外高光谱成像仪样机的低温光谱仪设计特点,为了检测系统的光谱识别能力,在实验室开展了详细的光谱性能测试。为满足气体探测对超高光谱精度的需求,提出了采用CO2激光器结合高精度单色仪的方法应用于色散型高光谱成像系统。在实验室对氨气气体进行了准确的红外吸收光谱测试,表明系统可用于气体探测及识别。在此基础上,开展了飞行试验,应用结果表明热红外高光谱可以有效开展城市典型建筑物分类、工业化学气体排放种类和形态监测等应用,特别是后者是目前其它光学遥感手段尚不具备的。以上研究和试验结果表明机载热红外高光谱成像仪已经具备了业务应用能力,后续将在仪器辐射定量化精度的提升方面进一步开展研究工作。  相似文献   

6.
本文依托于某专项任务研制的热红外高光谱设备开展了部分研究工作,该设备于2016年3月开展了海南东方市的功能飞行试验.针对背景辐射信号恢复,非均匀性两点校正后仍残余光谱维非均匀性的问题,提出了针对热红外高光谱数据谱段内差值均衡的处理方法,进一步提升了热红外高光谱数据立方体的质量,得到不影响原始光谱曲线的图像.  相似文献   

7.
热红外高光谱成像仪光谱匹配盲元检测算法   总被引:1,自引:0,他引:1       下载免费PDF全文
张长兴  刘成玉  亓洪兴  张东  蔡能斌 《红外与激光工程》2020,49(1):0104002-0104002(7)
受红外焦平面阵列生产工艺及材料本身特性影响,红外焦平面阵列不可避免地存在盲元,严重困扰红外数据的处理与应用。光栅分光推扫式热红外高光谱成像仪一般以红外焦平面阵列的其中的一维作为光谱维进行推扫式成像,空间维只剩一维,与一般的热像仪具有二维空间维的成像机制有很大区别。常规的实验室定标法和开窗处理的场景检测方法不能满足该成像方式的盲元检测需求。以热红外高光谱成像仪中的盲元检测为目标,有针对性地提出了基于光谱匹配的盲元检测算法。该方法从光谱维角度出发,以不同温度实验室黑体定标数据生成温升光谱数据,在数据规则化处理的基础上,自动提取有效像元目标的伪光谱曲线,采用光谱角匹配的方式实现盲元的自动检测。以典型的热红外高光谱成像仪获取数据并开展盲元检测实验,结果表明该方法充分利用了热红外高光谱成像仪的光谱维信息,检测精度较高,盲元补偿后的数据可满足热红外高光谱数据的行业应用。  相似文献   

8.
针对长波红外高光谱系统背景辐射强以及信噪比低的特点,设计了能有效抑制背景辐射的长波红外精细分光光谱成像系统.利用杂散辐射分析软件,对系统进行了背景辐射分析,包括全波段各辐射面源对背景辐射的贡献分量、各光学通道的背景辐射、机械内壁吸收率对背景辐射的影响、以及光机内壁温度对背景辐射的影响.主要通过制冷光机系统的温度、抛光亮...  相似文献   

9.
文中将光学系统中能量聚焦的概念引申至光谱维,提出在红外高光谱成像系统中通过信号处理获取感兴趣目标与其环境的光谱特征差异,结合调控目标函数得到光谱聚焦调控参数,进而控制成像系统中的可调谐部件自适应调谐到最有利于探测和识别的若干个光谱通道,实现光谱聚焦。文中提出了一种可实现光谱聚焦的系统构型,重点探讨了光谱聚焦的机制和实现途径,给出了关键分系统的技术方案。利用光谱聚焦可以实现光谱自适应探测,提高光谱成像信息利用效率,降低信息处理的资源需求,有助于提高系统的实时性和小型化,对于弹载、无人机载等高实时性、无人参与的应用具有十分重要意义。  相似文献   

10.
热红外高光谱成像仪的灵敏度模型与系统研制   总被引:3,自引:1,他引:3       下载免费PDF全文
热红外谱段是对地观测高光谱遥感中非常有用的波段,受限于技术发展,热红外谱段的高光谱成像系统在国内的空间光电系统中并不多见,近年来在国家相关部门的支持下发展迅速,取得了较大进展。结合十二五期间研制的机载热红外高光谱成像仪系统,建立了信号流模型,对系统背景辐射进行了建模仿真,并对红外焦平面组件等效暗电流进行了分析测量,在此基础上得出了影响系统的探测灵敏度的关键因素,给出了系统设计低温光学100K制冷的设计依据。机载热红外高光谱成像仪研制完成后,还进行了探测灵敏度实际测量并与仿真结果进行了对比分析,对未来进一步发展热红外高光谱成像技术积累了重要数据。  相似文献   

11.
显微热成像系统不仅能观测物体的形状细节,还能观测温度变化的细节,因此对需要进行细微热分析的领域具有重要作用。本文对显微热成像技术研究的背景和意义进行了概括,简单介绍了显微热成像系统的组成及工作过程,总结了显微热成像技术国内外发展研究及应用的现状,最后对其存在的问题及发展动态进行了分析。  相似文献   

12.
红外成像制导技术发展现状与展望   总被引:5,自引:3,他引:5  
随着信号处理、半导体技术的飞速发展,近几年红外成像制导技术取得了长足的进展.为了对该领域相关技术进行总结,为未来的研究工作提供参考,首先介绍了红外成像制导技术的概念,分析了红外光学系统、红外焦平面探测器以及图像处理等红外成像制导中的关键技术的发展现状.参考国内外红外成像制导领域的发展趋势,结合作者多年从事可见光、红外成像制导技术研究积累的经验以及对该领域关键技术的理解,预测了未来红外成像制导技术的发展方向.  相似文献   

13.
马宁  刘奕  李江勇  喻松林 《激光与红外》2017,47(10):1195-1200
随着红外探测技术的日趋成熟,以降低背景辐射为目的的低温光学技术已成为提高红外探测技术发展的主要途径。本文从工程应用的角度阐述了红外低温光学技术的各个要素,如低温光学系统构型选择、光学和机械结构设计、光学系统材料选择以及光学系统制冷方案设计等在低温光学处理中的设计要点。介绍了红外遥感相机和红外空间望远镜这两个红外低温光学的应用实例。最后对机载红外系统低温光学的应用提出了建议。  相似文献   

14.
林颖  徐卫明  袁立银  王建宇 《激光与红外》2010,40(12):1324-1329
光学系统自身热辐射产生的杂散光以及分光后信号能量的下降,极大影响着热红外高光谱系统的信噪比。光学系统制冷可大大减少系统杂散光,但低温下探测器暗电流对有效信号的影响变得突出。对热红外高光谱系统的信号成分进行理论分析,将探测器输出信号分为四个部分,并对各部分进行测量,得到常温和低温制冷条件下各信号成分以及等效噪声温差的变化规律,找到影响系统性能的关键因素,并给出提高系统信噪比的方案,为我国热红外高光谱系统的进一步发展与实用化提供参考。  相似文献   

15.
申屠理锋  唐安祥 《激光与红外》2012,42(11):1259-1262
介绍了热红外成像技术在转炉钢渣检测中的应用,叙述了红外成像技术的热成像原理和黑体辐射定律,分析了转炉钢渣检测的红外辐射原理,阐述了转炉出钢红外图像的特征,给出了图像处理的相关技术及实现算法,同时介绍了检测系统的结构组成及应用效果。  相似文献   

16.
非制冷热成像在夜视技术中的作用和地位   总被引:5,自引:2,他引:3  
微光和热成像技术是夜视技术的两大组成部分,非制冷热成像技术是红外成像技术的最新成就之一。文中比较了这两种技术的特点,讨论了非制冷热成像技术的优点、发展趋势及其在夜视技术中的作用和地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号