首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
新的改进IEEE 802.11 DCF性能的退避机制   总被引:1,自引:1,他引:0  
李喆  曹秀英 《通信技术》2010,43(8):46-47,50
分布式协调功能DCF是IEEE802.11标准最基本的媒体接入方法,它的核心是载波检测多址接入/冲突避免(CSMA/CA)机制,通过退避算法,减少碰撞的概率。提出了一种新的退避机制改进IEEE802.11DCF饱和吞吐量性能,建立了三维马尔可夫链网络模型详细研究分析,同时利用NS2对所提出的机制进行仿真,比较了改进后的802.11DCF饱和吞吐量与原802.11DCF的饱和吞吐量的大小,仿真结果证明了算法的准确有效。  相似文献   

2.
Based on the standardized IEEE 802.11 Distributed Coordination Function (DCF) protocol, this paper proposes a new backoff mechanism, called Smart Exponential‐Threshold‐Linear (SETL) Backoff Mechanism, to enhance the system performance of contention‐based wireless networks. In the IEEE 802.11 DCF scheme, the smaller contention window (CW) will increase the collision probability, but the larger CW will delay the transmission. Hence, in the proposed SETL scheme, a threshold is set to determine the behavior of CW after each transmission. When the CW is smaller than the threshold, the CW of a competing station is exponentially adjusted to lower collision probability. Conversely, if the CW is larger than the threshold, the CW size is tuned linearly to prevent large transmission delay. Through extensive simulations, the results show that the proposed SETL scheme provides a better system throughput and lower collision rate in both light and heavy network loads than the related backoff algorithm schemes, including Binary Exponential Backoff (BEB), Exponential Increase Exponential Decrease (EIED) and Linear Increase Linear Decrease (LILD). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Performance Analysis of IEEE 802.11 DCF in Imperfect Channels   总被引:1,自引:0,他引:1  
IEEE 802.11 is the most important standard for wireless local area networks (WLANs). In IEEE 802.11, the fundamental medium access control (MAC) scheme is the distributed coordination function (DCF). To understand the performance of WLANs, it is important to analyze IEEE 802.11 DCF. Recently, several analytical models have been proposed to evaluate the performance of DCF under different incoming traffic conditions. However, to the best of the authors' knowledge, there is no accurate model that takes into account both the incoming traffic loads and the effect of imperfect wireless channels, in which unsuccessful packet delivery may occur due to bit transmission errors. In this paper, the authors address this issue and provide an analytical model to evaluate the performance of DCF in imperfect wireless channels. The authors consider the impact of different factors together, including the binary exponential backoff mechanism in DCF, various incoming traffic loads, distribution of incoming packet size, queueing system at the MAC layer, and the imperfect wireless channels, which has never been done before. Extensive simulation and analysis results show that the proposed analytical model can accurately predict the delay and throughput performance of IEEE 802.11 DCF under different channel and traffic conditions.  相似文献   

4.
为满足空间信息网络低轨卫星用户多址接入骨干中继卫星的访问需求,基于IEEE 802.11机制,提出最短接入时延退避算法(Delay-Optimal Backoff,DOB),可解决大时空尺度条件下,传统二进制退避算法(Binary Exponential Backoff,BEB)造成的网络平均接入时延高和吞吐量低的问题.根据用户卫星与中继卫星的相对位置特性,设定中继卫星通信窗口,利用通信窗口内不同用户卫星数量时用户接入时延与平均接入请求概率的变化关系,确定最短接入时延条件下用户平均接入请求概率,实现动态调整碰撞窗口大小.研究结果表明,该算法使网络接入时延较BEB算法平均降低了10s,饱和吞吐量提升一倍,归一化业务量阈值比BEB算法增加至0.6,网络多址接入性能显著提高.  相似文献   

5.
The contention resolution scheme is a key component in carrier-sense-based wireless MAC protocols. It has a major impact on MAC'S performance metrics such as throughput, delay, and jitter. The IEEE 802.11 DCF adopts a simple contention resolution scheme, namely, the binary exponential backoff (BEB) scheme. The BEB scheme achieves a reasonable performance for transmitting best-effort packets in small-sized wireless networks. However, as the network size increases, it suffers from inefficiency because of the medium contention, which leads to reduced performance. The main reason is that the BEB mechanism incurs an ever- increasing collision rate as the number of contending nodes increases. We devise a novel contention resolution scheme, a k-round elimination contention (k-EC) scheme. The k-EC scheme exhibits high efficiency and robustness during the collision resolution. More importantly, it is insensitive to the number of contending nodes. This feature makes it feasible for use in networks of different sizes. Simulation results show that the k-EC scheme offers a powerful remedy to medium contention resolution. It significantly outperforms the IEEE 802.11 DCF scheme in all the MAC'S performance metrics and also exhibits better fairness.  相似文献   

6.
The performance of backoff scheme plays an important role in designing efficient Medium Access Protocols for ad hoc networks. In this paper, we propose an adaptive backoff scheme and evaluate the performance of the proposed scheme for ad hoc networks. The backoff mechanism devised by us grants a node access to the channel based on its probability of collision for a transmitted frame in comparison to the nodes in the two‐hop contention area. We use both an analytical model and simulation experiments to evaluate the performance of our adaptive backoff mechanism in an ad hoc network. The results show that our protocol exhibits a significant improvement in power saving, end‐to‐end goodput, packet delivery ratio, and hop‐put, compared with the existing IEEE 802.11 DCF. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In IEEE 802.11 based WLAN standard, distributed coordination function is the fundamental medium access control (MAC) technique. It employs a CSMA/CA with random binary exponential backoff algorithm and provides contention-based distributed channel access for stations to share the wireless medium. However, performance of this mechanism drops dramatically due to random structure of the backoff process, high collision probability and frame errors. That is why development of an efficient MAC protocol, providing both high throughput for data traffic and quality of service (QoS) support for real-time applications, has become a major focus in WLAN research. In this paper, we propose an adaptive beacon-based collision-free MAC adaptation. The proposed scheme makes use of beacon frames sent periodically by access point, lets stations enter the collision-free state and reduces the number of idle slots regardless of the number of stations and their traffic load (saturated or unsaturated) on the medium. Simulation results indicate that the proposed scheme dramatically enhances the overall throughput and supports QoS by reducing the delay, delay variation and dropping probability of frames.  相似文献   

8.
Wireless local area networks (WLANs) based on the IEEE 802.11 standards have been widely implemented mainly because of their easy deployment and low cost. The IEEE 802.11 collision avoidance procedures utilize the binary exponential backoff (BEB) scheme that reduces the collision probability by doubling the contention window after a packet collision. In this paper, we propose an easy‐to‐implement and effective contention window‐resetting scheme, called double increment double decrement (DIDD), in order to enhance the performance of IEEE 802.11 WLANs. DIDD is simple, fully compatible with IEEE 802.11 and does not require any estimation of the number of contending wireless stations. We develop an alternative mathematical analysis for the proposed DIDD scheme that is based on elementary conditional probability arguments rather than bi‐dimensional Markov chains that have been extensively utilized in the literature. We carry out a detailed performance study and we identify the improvement of DIDD comparing to the legacy BEB for both basic access and request‐to‐send/clear‐to‐send (RTS/CTS) medium access mechanisms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
IEEE 802.11协议中分布式协调机制的性能模型   总被引:4,自引:1,他引:3       下载免费PDF全文
陈弘原  李衍达 《电子学报》2005,33(1):138-141
IEEE 802.11采用异步传输方式作为媒体层的主要技术,而基于载波检测碰撞避免的分布式接入机制则是其最大的特点.关于分布式接入机制的研究,目前已经有了许多的模型,但是,大部分的模型都是研究终端所产生的数据包是固定长度,很少有模型来研究终端数据包是可变长度的情况.这种情况下的难点就是不易求得碰撞发生时信道所消耗的时间长度.本文则研究在终端数据包长度的分布函数为f(x)下协议的吞吐量和延迟性能模型.首先本文将原标准协议的退避算法看成是有固定大小的竞争窗口,用以求得站点的发送概率;然后,分析信道的工作状态,给出了性能模型,重点在求解碰撞消耗的信道时间,在文章的最后,我们通过仿真试验来验证了模型的正确性.  相似文献   

10.
Distributed coordination function (DCF) is the basis protocol for IEEE 802.11 standard wireless local area networks. It is based on carrier sense multiple access with collision avoidance (CSMA/CA) mechanism. DCF uses backoff process to avoid collisions on the wireless channel. The main drawback with this process is that packets have to spend time in the backoff process which is an additional overhead in their transmission time. The channel is rendered idle when all the stations defer their transmissions due to their backoff process. Therefore, the channel utilization and the total throughput on the channel can be improved by reducing the average time spent by the packets in the backoff process. In this paper, we propose a new media access coordination function called proposed media access protocol (PMAP) that will improve the channel utilization for successful packet transmission and therefore, the total achievable throughput. In addition, we propose an analytical model for PMAP under saturated conditions. We use this model to analyze the performance of PMAP under saturated conditions. To substantiate the effectiveness of our model, we have verified the model by simulating PMAP in NS‐2. Simulation and analytical results show that under saturated conditions, PMAP shows profound improvement in the throughput performance compared to DCF. In addition, the throughput performance of PMAP under unsaturated conditions is presented. We have also presented the delay performance of PMAP and DCF through simulation in both saturated and unsaturated conditions. Simulation results show that the average delay experienced by the packets is less in PMAP compared to DCF. Further, the variance in the packet delay is same for both PMAP and DCF protocols under unsaturated conditions. From the performance results obtained for PMAP under both saturated and unsaturated conditions, it can be concluded that PMAP is superior in performance compared to DCF. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
EBA: an enhancement of the IEEE 802.11 DCF via distributed reservation   总被引:3,自引:0,他引:3  
The IEEE 802.11 standard for wireless local area networks (WLANs) employs a medium access control (MAC), called distributed coordination function (DCF), which is based on carrier sense multiple access with collision avoidance (CSMA/CA). The collision avoidance mechanism utilizes the random backoff prior to each frame transmission attempt. The random nature of the backoff reduces the collision probability, but cannot completely eliminate collisions. It is known that the throughput performance of the 802.11 WLAN is significantly compromised as the number of stations increases. In this paper, we propose a novel distributed reservation-based MAC protocol, called early backoff announcement (EBA), which is backward compatible with the legacy DCF. Under EBA, a station announces its future backoff information in terms of the number of backoff slots via the MAC header of its frame being transmitted. All the stations receiving the information avoid collisions by excluding the same backoff duration when selecting their future backoff value. Through extensive simulations, EBA is found to achieve a significant increase in the throughput performance as well as a higher degree of fairness compared to the 802.11 DCF.  相似文献   

12.
Jun  Xiaodong  Dharma P.   《Ad hoc Networks》2006,4(5):651-668
With an increasing popularity of DCF based wireless LAN, the modeling of 802.11 distributed coordination function (DCF) has attracted lots of research attention. Existing analysis of 802.11 DCF has been focused on the determination of the throughput and the packet delay under saturated traffic and ideal channel conditions. Although some recent papers address the saturated performance under a simple uniform error model, they can hardly capture the impact of bursty characteristics of wireless fading on the performance of 802.11 DCF. This paper presents exact formulae for the throughput and the delay in DCF for various traffic conditions when either saturated or unsaturated traffic load is present. A two-state Markov channel model is incorporated to present the bursty characteristics of channel errors. With our analysis, the impact of bursty channel error on unsuccessful transmission probability and the DCF performance can be determined. The results of our analytical framework reveal that the four-way handshaking scheme does not improve throughput substantially for light traffic load. However, for heavy traffic load, the four-way handshaking scheme is advantageous as compared to the basic access scheme. Also, extensive simulation is done to substantiate the accuracy of our analytical model.  相似文献   

13.
MAC Access Delay of IEEE 802.11 DCF   总被引:2,自引:0,他引:2  
The MAC access delay in a saturated IEEE 802.11 DCF wireless LAN is analyzed. We develop a unified analytical model and obtain explicit expressions for the first two moments as well as the generating function. We show via comparison with simulation that our model accurately predicts the mean, standard deviation, and distribution of the access delay for a wide range of operating conditions. In addition, we show that the obtained generating function is much more accurate than others that have appeared in the literature. Using our model, we prove that the binary exponential backoff mechanism induces a heavy-tailed delay distribution for the case of unlimited retransmissions. We show using numerical examples that the distribution has a truncated power-law tail when a retransmission limit exists. This finding suggests that DCF is prone to long delays and not suited to carrying delay-sensitive applications  相似文献   

14.
With the emerging popularity of the wireless local area network technology, many analytical models for its main medium access control mechanism, Distributed Coordination Function (DCF), have been reported. However, most of them are based on some oversimplifying assumptions, or need very complicated mathematical manipulations. In this paper, a simple and accurate packet delay model has been proposed for the IEEE 802.11 DCF mechanism in saturated traffic and error-prone industrial applications which is based on a modified discrete-time Markov chain model of the DCF mechanism which accounts for the backoff freezing. It estimates various delay parameters including the average, jitter, Cumulative Distribution Function, and the effect of Retry Limit. The simulation results confirm the accuracy of the proposed delay model compared with other similar models in the literature.  相似文献   

15.
In this paper, we propose an effective medium access mechanism to enhance performance of the IEEE 802.11 distributed coordination function (DCF). One of the primary issues of 802.11 is a contention-based medium access control (MAC) mechanism over a limited medium, which is shared by many mobile users. In the original 802.11 DCF, the binary exponential backoff algorithm with specific contention window size is employed to coordinate the competition for shared channel. Instead of binary exponential increase, we adopt linear increase for the contention window that is determined according to the competing number of nodes. We also assume that the access point can broadcast the number of mobile nodes to each station through management frames. An analytical model is developed for the throughput performance of the wireless medium. Using simulation results from the NS2 simulator, we show that our model can accurately predict the system saturation throughput, and can obtain better performance in terms of throughput, fairness, and packet drop.  相似文献   

16.
In this paper, we introduce a comprehensive packet delay analysis for wireless networks based on IEEE 802.11 Distributed Coordination Function (DCF). We develop mathematical models that calculate a set of packet delay metrics, namely a) the average packet delay for successfully transmitted packets, b) the average packet delay of successfully transmitted packets experiencing a specific number of collisions, c) the average packet drop time, d) the delay jitter and e) the delay distribution by computing the probability of a packet to be successfully transmitted experiencing delay time lower than a given value. All the developed models are based on calculating station’s delay time at the transmission slot(s) plus the average time that station defers at backoff slots before successful transmission. The mathematical models are simple, computationally fast and can be used to build admission control algorithms. Simulation results show that our proposed mathematical analysis is highly accurate.  相似文献   

17.
M2M小数据业务的IEEE 802.11WLAN分析模型   总被引:1,自引:0,他引:1  
王雅辉  迟学芬 《通信学报》2011,32(12):122-130
机器对机器(M2M,machine to machine)通信有着巨大的市场潜力,无线局域网(WLAN)作为3G网络的主要补充必将承载大量M2M业务。针对具有时延容忍、耐性重试等特点的典型的M2M小数据业务,提出了一种大时间尺度退避的IEEE 802.11 DCF网络分析模型,推导了MAC层服务时间的概率分布;建立IPP/G/1/K离散时间排队系统模型,研究了非饱和负载下M2M业务在WLAN非理想信道中传输的QoS性能。算法仿真结果表明,大时间尺度退避机制有效提高了系统的吞吐量,降低了系统阻塞率。  相似文献   

18.
一种提高IEEE 802.11吞吐量和公平性的自适应优化算法   总被引:2,自引:0,他引:2  
该文提出了一种针对IEEE 802.11 DCF网络增强其吞吐量和公平性性能的自适应优化算法,算法基于网络节点侦听信道得到的网络状态信息进行竞争发送的自适应调整以获得最优的网络性能,称之为CSCC(Channel Sensing Contention Control)算法。算法采用了对节点的信道接入请求以概率参数P_T进行过滤的方法控制节点竞争接入信道的激烈程度,其主要特点在于在优化调整过程中不需要进行计算复杂的网络节点数量估计,并且可以在不同网络状态下围绕始终确定的优化目标进行参数优化调整。仿真实验结果表明,算法能够适应不同节点数量和不同数据大小的网络进行自适应的网络优化调整,并获得了系统吞吐量、碰撞概率、延迟、延迟抖动、公平性等多方面的性能改善。  相似文献   

19.
The binary exponential backoff (BEB) mechanism is applied to the packet retransmission in lots of wireless network protocols including IEEE 802.11 and 802.15.4. In distributed dynamic network environments, the fixed contention window (CW) updating factor of BEB mechanism can’t adapt to the variety of network size properly, resulting in serious collisions. To solve this problem, this paper proposes a backoff algorithm based on self-adaptive contention window update factor for IEEE 802.11 DCF. In WLANs, this proposed backoff algorithm can greatly enhance the throughput by setting the optimal CW updating factor according to the theoretical analysis. When the number of active nodes varies, an intelligent scheme can adaptively adjust the CW updating factor to achieve the maximal throughput during run time. As a result, it effectively reduces the number of collisions, improves the channel utilization and retains the advantages of the binary exponential back-off algorithm, such as simplicity and zero cost. In IEEE 802.11 distributed coordination function (DCF) protocol, the numerical analysis of physical layer parameters show that the new backoff algorithm performance is much better than BEB, MIMD and MMS algorithm.  相似文献   

20.
The Probability Distribution of Slot Selection (PDoSS) of IEEE 802.11 DCF is extremely uneven, which makes the packet collision probability very high. In this paper, we propose a novel RWBO+BEB backoff algorithm for 802.11 DCF to make the PDoSS even and thus decrease the packet collision probability. A Markov model is built for analyzing RWBO+BEB's PDoSS and saturation throughput. The model's correctness is validated by simulation. The performance of RWBO+BEB is also evaluated by simulation in terms of PDoSS, saturation throughput, packet collision probability and packet delay. The simulation results indicate that RWBO+BEB can decrease the packet collision probability to a large extent, utilize the channel more efficiently, and make the packet delay jitter much lower comparing to 802.11 DCF. Moreover, we analyze the relation of saturation throughput and packet collision probability to walking probability (pd) and contention windows (w), respectively. The analysis indicates that RWBO+BEB has a remarkable feature: its saturation throughput keeps high, and packet collision probability keeps very low (which under 0.1) in a large range of pd and w, this allows us to configure pd and w more flexibly. Supported by the Program for New Century Excellent Talents in University (NCET 2005), the Research Project of Chongqing Municipal Education Commission of China (KJ050503), the Research Grants by the Science & Tech. Commission of Chongqing (8817) and the National Science Foundation of China (90304004). Li Yun was born in 1974. He is currently a Ph.D. candidate in University of Electronic Science and Technology of China. His research interests are in MAC protocol improvement and QoS in wireless ad hoc networks. Long Ke-Ping was born in 1968. He received his Ph.D. from University of Electronic Science and Technology of China in 1999. He is a professor Ph.D. supervisor in special research Centre for Optical Internet and Wireless Information Networks (COIWIN) at ChongQing University of Posts and Telecommunications. He was an IEEE member. He has over 120 research publications and 4 patents application. His research interests include: Optical Burst switching, modeling of optical networking, IP QoS mechanisms (Diffserv and Intserv, MPLS), WDM/SDH/ATM networks survivability, TCP/IP enhancements in wireless networks, and Mobile IP. Zhao Wei-liang was born in 1962 and received his Ph.D. degree from University of Electronic Science and Technology of China in 2001. He is a professor and a post-doctoral fellow in Beijing University of Posts & Telecommunications of China. His current interest lies in wireless communications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号