首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Memristors based on mixed anionic‐electronic conducting oxides are promising devices for future data storage and information technology with applications such as non‐volatile memory or neuromorphic computing. Unlike transistors solely operating on electronic carriers, these memristors rely, in their switch characteristics, on defect kinetics of both oxygen vacancies and electronic carriers through a valence change mechanism. Here, Pt|SrTiO3‐δ|Pt structures are fabricated as a model material in terms of its mixed defects which show stable resistive switching. To date, experimental proof for memristance is characterized in hysteretic current–voltage profiles; however, the mixed anionic‐electronic defect kinetics that can describe the material characteristics in the dynamic resistive switching are still missing. It is shown that chronoamperometry and bias‐dependent resistive measurements are powerful methods to gain complimentary insights into material‐dependent diffusion characteristics of memristors. For example, capacitive, memristive and limiting currents towards the equilibrium state can successfully be separated. The memristor‐based Cottrell analysis is proposed to study diffusion kinetics for mixed conducting memristor materials. It is found that oxygen diffusion coefficients increase up to 3 × 10–15 m2s–1 for applied bias up to 3.8 V for SrTiO3‐δ memristors. These newly accessible diffusion characteristics allow for improving materials and implicate field strength requirements to optimize operation towards enhanced performance metrics for valence change memristors.  相似文献   

2.
High‐performance memristors based on AlN films have been demonstrated, which exhibit ultrafast ON/OFF switching times (≈85 ps for microdevices with waveguide) and relatively low switching current (≈15 μA for 50 nm devices). Physical characterizations are carried out to understand the device switching mechanism, and rationalize speed and energy performance. The formation of an Al‐rich conduction channel through the AlN layer is revealed. The motion of positively charged nitrogen vacancies is likely responsible for the observed switching.  相似文献   

3.
4.
High‐temperature powder neutron diffraction experiments are conducted around the reported β–γ phase transition (~930 °C) in BiFeO3. The results demonstrate that while a small volume contraction is observed at the transition temperature, consistent with an insulator–metal transition, both the β‐ and γ‐phase of BiFeO3 exhibit orthorhombic symmetry; i.e., no further increase of symmetry occurs during this transition. The γ‐orthorhombic phase is observed to persist up to a temperature of approximately 950 °C before complete decomposition into Bi2Fe4O9 (and liquid Bi2O3), which subsequently begins to decompose at approximately 960 °C.  相似文献   

5.
NaGdF4:Eu3+, NaEuF4, and NaGdF4 nanocrystals were synthesized in the high‐boiling coordinating solvent N‐(2‐hydroxyethyl)‐ethylenediamine (HEEDA). Phase pure nanomaterials, crystallizing either in the cubic α‐phase or the hexagonal β‐phase, were obtained by adjusting one reaction parameter only, i.e., the molar ratio between metal and fluoride ions in the synthesis. The hexagonal β‐phase is formed, if this molar ratio is close to stoichiometric, whereas the cubic α‐phase is obtained in the presence of excess metal ions. The optical properties of the Eu3+ doped samples are different for the two crystal phases. The results indicate an increased number of oxygen impurities close to Eu3+ ions, if excess metal ions are used in the synthesis.  相似文献   

6.
Materials commonly used in the carrier transport layers of organic light‐emitting diodes, where transport occurs through the bulk, are in general very different from materials used in organic field‐effect transistors, where transport takes place in a very thin accumulation channel. In this paper, the use of a high‐performance electron‐conducting field‐effect transistor material, diperfluorohexyl‐substituted quaterthiophene (DFH‐4T), as the electron‐transporting material in an organic light‐emitting diode structure is investigated. The organic light‐emitting diode has an electron accumulation layer in DFH‐4T at the organic hetero‐interface with the host of the light‐emitting layer, tris(8‐hydroxyquinoline) aluminum (Alq3). This electron accumulation layer is used to transport electrons and inject them into the active emissive host‐guest layer. By optimizing the growth conditions of DFH‐4T for electron transport at the organic hetero‐interface, high electron current densities of 750 A cm?2 are achieved in this innovative light‐emitting structure.  相似文献   

7.
A highly stable new electrochromic polymer, poly(1,4‐bis(2‐(3′,4′‐ethylenedioxy)thienyl)‐2‐methoxy‐5‐2″‐ethylhexyloxybenzene) (P(BEDOT‐MEHB)) was synthesized and its electrochemical and electrochromic properties are reported. P(BEDOT‐MEHB) showed a very well defined electrochemistry with a relatively low oxidation potential of the monomer at + 0.44 V versus Ag/Ag+, E1/2 at – 0.35 V versus Ag/Ag+ and stability to long‐term switching up to 5000 cycles. A high level of stability to over‐oxidation has also been observed as this material shows limited degradation of its electroactivity at potentials 1.4 V above its half‐wave potential. Spectroelectrochemistry showed that the absorbance of the π–π* transition in the neutral state is blue‐shifted compared to PEDOT, displaying a maximum at 538 nm (onset at 640 nm), thus giving an almost colorless, highly transparent oxidized polymer with a bandgap of 1.95 eV. Different colors observed at different oxidation levels and strong absorption in the near‐IR make this polymer a good candidate for several applications.  相似文献   

8.
9.
Pulsed Laser Deposition (PLD) was used to prepare thin films with the nominal composition La0.58Sr0.4Co0.2Fe0.8O3‐δ (LSCF). The thin film microstructure was investigated as a function of PLD deposition parameters such as: substrate temperature, ambient gas pressure, target‐to‐substrate distance, laser fluence and frequency. It was found that the ambient gas pressure and the substrate temperature are the key PLD process parameters determining the thin film micro‐ and nanostructure. A map of the LSCF film nanostructures is presented as a function of substrate temperature (25–700 °C) and oxygen background pressure (0.013–0.4 mbar), with film structures ranging from fully dense to highly porous. Fully crystalline, dense, and crack‐free LSCF films with a thickness of 300 nm were obtained at an oxygen pressure lower than 0.13 mbar at a temperature of 600 °C. The obtained knowledge on the structure allows for tailoring of perovskite thin film nanostructure, e.g., for solid oxide fuel cell cathodes. A simple geometrical model is proposed, allowing estimation of the catalytic active surface area of the prepared thin films. It is shown that voids at columnar grain boundaries can result in an increase of the surface area by approximately 25 times, when compared to dense flat films.  相似文献   

10.
Self‐assembling cyclic peptide nanotubes (SPNs) have been extensively studied due to their potential applications in biology and material sciences. Cyclic γ‐peptides, which have a larger conformational space, have received less attention than the cyclic α‐ and β‐peptides. The self‐assembly of cyclic homo‐γ‐tetrapeptide based on cis‐3‐aminocyclohexanecarboxylic acid (γ‐Ach) residues, which can be easily synthesized by a one‐pot process is investigated. Fourier transform infrared (FTIR) and NMR analysis along with density functional theory (DFT) calculations indicate that the cyclic homo‐γ‐tetrapeptide, with a non‐planar conformation, can self‐assemble into nanotubes through hydrogen‐bond‐mediated parallel stacking. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments reveal the formation of bundles of nanotubes in CH2Cl2/hexane, but individual nanotubes and bundles of only two nanotubes are obtained in water. The integration of TEG (triethylene glycol) monomethyl ether chains and cyclopeptide backbones may allow the control of width of single nanotubes.  相似文献   

11.
Associative memory is one of the significant characteristics of the biological brain. However, it has yet to be realized in a large memristor array due to the high requirements on the memristor device. In this work, the multilevel memristor cell is optimized by employing an electro‐thermal modulation layer. Memristor devices show both high resistance, cell‐to‐cell uniformity, and multilevel resistive switching behaviors with good reliability. A Hopfield neural network is experimentally demonstrated on a 1k memristor array that is capable of realizing the associative memory function for emotion image recovery. By using both asynchronous and synchronous refresh schemes, complete emotion images can be recalled from partial information.  相似文献   

12.
Bamboo‐like gallium nitride (GaN) microwires are synthesized via chemical vapor deposition (CVD) to fabricate piezotronic memristors. Defect boundary areas (DBAs) near the bamboo knots produce apparent switching between high and low resistance states upon sweeping of the magnitudes of the biased voltages across the GaN microwire‐based devices at room temperature. Furthermore, by coupling the piezoelectric and semiconducting properties in the GaN microwire, the piezotronic effect is introduced to effectively modulate the SET voltages via strain‐induced piezoelectric polarizations created at the DBA interface upon mechanical deformation. The experimental results indicate that the device remembered the most recent resistance states when the power is turned off, and the waveform is tunable because of the delayed switching effect. This work provides an alternative approach to the design and modification of memristors based on nanostructured piezoelectric semiconductors using the piezotronic effect.  相似文献   

13.
Ferroelectrics are multifunctional materials that reversibly change their polarization under an electric field. Recently, the search for new ferroelectrics has focused on organic and bio‐organic materials, where polarization switching is used to record/retrieve information in the form of ferroelectric domains. This progress has opened a new avenue for data storage, molecular recognition, and new self‐assembly routes. Crystalline glycine is the simplest amino acid and is widely used by living organisms to build proteins. Here, it is reported for the first time that γglycine, which has been known to be piezoelectric since 1954, is also a ferroelectric, as evidenced by local electromechanical measurements and by the existence of as‐grown and switchable ferroelectric domains in microcrystals grown from the solution. The experimental results are rationalized by molecular simulations that establish that the polarization vector in γglycine can be switched on the nanoscale level, opening a pathway to novel classes of bioelectronic logic and memory devices.  相似文献   

14.
15.
16.
17.
While thioacetate‐terminated oligo(phenylene vinylene)s (OPVs) have been synthesized and employed in applications involving the formation of metal–molecule–metal junctions, the synthesis and application of potentially more versatile α,ω‐dithiol OPVs have not previously been described. Here, a thiomethyl‐precursor route to the synthesis of α,ω‐dithiol OPVs is reported and their ability to form well‐ordered self‐assembled monolayers (SAMs) without the addition of exogenous deprotection reagents is described. α,ω‐Dithiol OPV monolayers exhibit thicknesses consistent with molecular length and are nearly defect‐free, as assayed by electrochemical measurements. To demonstrate the ease with which SAMs containing these bifunctional OPVs can, in contrast to thioacetate functionalized OPVs, be further functionalized with materials other than gold, we have modified them in a single step with a sub‐monolayer of cadmium selenide nanocrystals (NCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) confirm that these NC‐modified films are both smooth and uniform over the largest areas investigated (> 10 μm2) and no evidence of NC aggregation is observed. To evaluate the electrochemical response of these metal–molecule–semiconductor assemblies we have fabricated NC‐modified OPV SAMs with ferrocene‐coated NCs. Variable‐frequency alternating current voltammetry indicates that electron transfer in these assemblies is much more rapid than in analogous structures formed using simple alkane dithiols. It thus appears that α,ω‐dithiol OPVs are well suited for the formation of high‐quality conducting SAMs for the functionalization of gold and other surfaces.  相似文献   

18.
A study of the photo‐oxidation of films of poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV) blended with [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM), and solar cells based thereon, is presented. Solar‐cell performance is degraded primarily through loss in short‐circuit current density, JSC. The effect of the same photodegradation treatment on the optical‐absorption, charge‐recombination, and charge‐transport properties of the active layer is studied. It is concluded that the loss in JSC is primarily due to a reduction in charge‐carrier mobility, owing to the creation of more deep traps in the polymer during photo‐oxidation. Recombination is slowed down by the degradation and cannot therefore explain the loss in photocurrent. Optical absorption is reduced by photo‐bleaching, but the size of this effect alone is insufficient to explain the loss in device photocurrent.  相似文献   

19.
Two angular‐shaped 4,9‐didodecyl α‐aNDT and 4,9‐didodecyl β‐aNDT isomeric structures have been regiospecifically designed and synthesized. The distannylated α‐aNDT and β‐aNDT monomers are copolymerized with the Br‐DTNT monomer by the Stille coupling to furnish two isomeric copolymers, PαNDTDTNT and PβNDTDTNT, respectively. The geometric shape and coplanarity of the isomeric α‐aNDT and β‐aNDT segments in the polymers play a decisive role in determining their macroscopic device performance. Theoretical calculations show that PαNDTDTNT possesses more linear polymeric backbone and higher coplanarity than PβNDTDTNT. The less curved conjugated main chain facilitates stronger intermolecular π–π interactions, resulting in more redshifted absorption spectra of PαNDTDTNT in both solution and thin film compared to the PβNDTDTNT counterpart. 2D wide‐angle X‐ray diffraction analysis reveals that PαNDTDTNT has more ordered π‐stacking and lamellar stacking than PβNDTDTNT as a result of the lesser curvature of the PαNDTDTNT backbone. Consistently, PαNDTDTNT exhibits a greater field effect transistor hole mobility of 0.214 cm2 V?1 s?1 than PβNDTDTNT with a mobility of 0.038 cm2 V?1 s?1. More significantly, the solar cell device incorporating the PαNDTDTNT:PC71BM blend delivers a superior power conversion efficiency (PCE) of 8.01% that outperforms the PβNDTDTNT:PC71BM‐based device with a moderate PCE of 3.6%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号