首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Low-temperature (77, 4.2 K) operation is proposed for bulk CMOS devices for use in super-fast VLSI applications. Symmetrical variations of both types of MOSFET parameters with respect to temperature and latchup immunity make CMOS a very promising device technology at low temperatures. To demonstrate the performance advantage of circuit operation at low temperatures, multipliers with two different circuit configurations are designed and fabricated with a gate length of 1.3 µm. Multiplication speeds of 8.0 and 6.6 ns are obtained with CMOS circuit configurations at 4.2 K and with pulsed-p-load/CMOS circuit configurations at 77 K, respectively.  相似文献   

2.
The performance characteristics of submicrometer CMOS devices operating at low/cryogenic temperatures (CRYO-CMOS) are determined. The advantages and problems in a CRYO-CMOS technology are experimentally studied in relation to the velocity saturation, source-drain resistances, mobility behavior, carrier freeze-out effects, hot-carrier effects, and circuit performance. The increase of the maximum transconductance at low temperatures (77, 4.2 K) has been confirmed even in the submicrometer channel region. However, improvement of inabilities at a VGnearly equal to 5 V is not so significant in devices with thinner oxides and less so in pMOS devices than in nMOS devices. Excellent subthreshold characteristics have been obtained at low temperatures, making very low-voltage operation possible. One problem found in the threshold control of pMOS transistors is that the boron ions implanted in the surface freeze out, causing unusual subthreshold behavior. Circuit delays have been improved by a factor of 2 to 3, and CRYO-CMOS shows the lowest power-delay product among existing semiconductor technologies with speed performance comparable to bipolar ECL devices. For LDD devices, speed improvements are only slightly smaller than for single-drain devices, while currents and transconductances in the linear regions are limited because of carrier freeze-out of the lightly doped drain. For both channel LDD devices, the transconductance degradations and VTshifts observed under dc stress conditions at 77 K are considered to result from electron injection into spacer oxides.  相似文献   

3.
The dependence of submicrometer-channel CMOS performance on surface orientation is measured for LDD devices at both 300 and 77 K. Special emphasis is placed on determining the optimum crystalline plane for CMOS operating at low temperatures (CRYO-CMOS). A comparison of transistor parameters is experimentally made between  相似文献   

4.
To realize a high-performance LSI, the devices used should satisfy the following requirements: 1) high-speed operation, 2) low power consumption, 3) easy designability, and 4) high integration capability. SOS/CMOS has been examined both experimentally and theoretically for these aspects. Ideal CMOS operation with /spl tau//sub pd/ ~ 100 ps with 0.1-pJ energy required to switch an inverter is obtained. 1-GHz operation is confirmed on dynamic 1/16 frequency dividers with 1.0-/spl mu/m effective channel-length devices. Using the same device, a maximum multiplying time, /spl tau//sub mul/ ~ 25 ns at 5 V with 15-mW average power at 10/sup 7/ multiplications/s is obtained on a 4 X 4 parallel multiplier. The above result agrees with circuit simulation predictions without including stray capacitance associated with the wiring. The same simulation predicts rmul ~ 60 ns with a maximum power dissipation of 200 mW at 16-MHz operation for a 16 X 16 parallel multiplier. This prediction is also confirmed experimentally. These facts indicate good designability of SOS/CMOS. For larger scale integration capability estimation, power dissipation and wiring delay were examined theoretically for bulk NMOS, bulk CMOS, and SOS/CMOS. The results indicate that for smaller scale integration, bulk NMOS and SOS/CMOS operate faster than bulk CMOS. However, for larger scale integration, SOS/CMOS operates faster than bulk CMOS which, in turn, operates faster than bulk NMOS.  相似文献   

5.
Performance enhancement of CMOS inverters at room and liquid-nitrogen temperatures are studied. The extent of delay improvement at low temperature is limited by the velocity saturation effect, as the channel lengths are decreased and/or the supply voltage increased. An analytical delay model taking into account velocity saturation is developed that accurately predicts the measured delay of CMOS inverter chains with drawn channel lengths down to 0.5 µm, Compared are the relative merits of CMOS devices operating at 77 K and those scaled for room-temperature operations.  相似文献   

6.
0.1-μm CMOS devices using low-impurity-channel transistors (LICTs) with dual-polysilicon gates have been fabricated by nondoped epitaxial growth technology, high-pressure oxidation of field oxide, and electron-beam lithography. These devices, with gate lengths of 0.135 μm, achieved normal transistor operation at both 300 and 77 K using 1.5-V supply voltage. Maximum transconductances are 203 mS/mm for nMOS transistors and 124 mS/mm for pMOS transistors at 300 K. Low-impurity channels grown on highly doped wells provide low threshold voltages of about 0.35 V for nMOS transistors and about -0.15 V for pMOS transistors at 77 K, and preserve good turn-offs with subthreshold swings of 25 mV/decade at 77 K. LICTs suppress short-channel effects more effectively, compared with conventional devices with nearly uniform dopings  相似文献   

7.
Under cryogenic operation, a low Vth realizes a high speed performance at a greatly reduced power-supply voltage, which is the most attractive feature of Cryo-CMOS. It is very important in sub-0.25 μm Cryo-CMOS devices to reconcile the miniaturization and the low Vth. Double implanted MOSFET's technology was employed to achieve the low Vth while maintaining the short channel effects immunity. We have investigated both the DC characteristics and the speed performance of 0.25 μm gate length CMOS devices for cryogenic operation. The measured transconductances in the saturation region were 600 mS/mm for 0.2 μm gate length n-MOSFET's and 310 mS/mm for 0.25 μm gate length p-MOSFET's at 80 K. The propagation delay time in the fastest CMOS ring oscillator was 22.8 ps at Vdd=1 V at 80 K. The high speed performance at extremely low power-supply voltages has been experimentally demonstrated. The speed analysis suggests that the sub-l0 ps switching of Cryo-CMOS devices will be realized by reducing the parasitic capacitances and through further miniaturization down to 0.1 μm gate length or below  相似文献   

8.
The effect of back-gate bias on the subthreshold behavior and the switching performance in an ultrathin SOI CMOS inverter operating at 300 and 77 K is investigated using a low-temperature device simulator. The simulation results show that the nonzero back-gate bias induces hole pile-up at the back interface, which causes opposite effects on the NMOS and PMOS subthreshold characteristics at 300 and 77 K. Throughout the transient process, at 300 K, for VB=-5 V operation, hole pile-up at the back interface always exists in the NMOS device. Compared to the zero back-gate bias case, at VB=-5 V, the risetime of the SOI CMOS inverter is over 5% shorter at 77 and 300 K and the falltime is 5% longer. Prepinch-off velocity saturation in the NMOS device dominates the pull-down transient as a result of the smaller electron critical electric field  相似文献   

9.
Static and dynamic performance of a CMOS ternary inverter has been studied in the MOSFET's threshold voltage region at the liquid nitrogen temperature (77K), and compared with the corresponding room temperature (296K) operation. It is observed that the positive ternary inverter (PTI), simple ternary inverter (STI) and negative ternary inverter (NTI) exhibit sharper voltage transfer characteristics and improved transient response at the liquid nitrogen temperature.  相似文献   

10.
Comparison of NMOS and PMOS hot carrier effects from 300 to 77 K   总被引:1,自引:0,他引:1  
Since hot carrier effects can pose a potential limit to device scaling, hot-carrier-induced device degradation has been one of the major concerns in modern device technology. Currently, there is a great interest in pursuing low-temperature operation of MOS devices since it offers many advantages compared to room temperature operation. Also, low-temperature operation is often required for space applications. However, low-temperature operation exacerbates hot carrier reliability of MOS devices. Even though hot carrier effects are significantly worse at low temperature, most of the studies on hot-carrier-induced device degradation were done at room temperature and little has been done at low temperature. In this work, hot-carrier-induced device degradation is characterized from 77 K to room temperature for both NMOS and PMOS devices with the emphasis on low-temperature behavior of hot carrier degradation. For NMOS devices, the worst case bias condition for hot carrier effects is found to be a function of temperature. It is also determined that one of the primary reasons for the great reduction on hot carrier device lifetime at low temperature is that a given amount of damage simply induces a greater reduction on device performance at low temperature. For PMOS devices, the initial damage appears similar for both room temperature and 77 K; however, subsequent annealing indicates that the damage mechanism at 77 K differs markedly from that at 300 K. Hot carrier stressing on PMOS devices at low temperature appears to induce hole generation and substantial interface state creation upon annealing unlike 300 K stressed devices. This finding may have serious reliability implications for PMOS devices operated at cryogenic temperatures  相似文献   

11.
The circuit performance of CMOS technologies with silicon dioxide (SiO2) and reoxidized nitrided oxide (RONO) gate dielectrics over the normal regime of digital circuit operation, i.e. VGS⩽5 V and BDS⩽5 V, is discussed. The simulation of a simple CMOS inverter has shown that the SiO2 inverter consistently outperforms the RONO inverter over temperatures ranging from 300 to 100 K. This can be attributed mainly to the significantly lower μp (hole mobility) of RONO p-channel devices. At 300 K, μp(RONO) is 14-8% smaller than μp(SiO2) over the entire range of gate biases, while μn(RONO) (electron mobility of n-channel RONO devices) is also smaller than μn(SiO2) and reaches only 96% of μn(SiO2) at VGS=5 V. At 100 K, μn(RONO)/μn (SiO2) at VGS=5 V is increased to 1.10, however, μp(RONO)/μp(SiO2) at VGS=5 V is degraded to 0.59. The dependence of circuit performance on the supply voltage has also been evaluated for the RONO and SiO2 inverters  相似文献   

12.
The design optimization for 0.3-μm channel CMOS technology at liquid-nitrogen temperature (77 K) is described. The tradeoff between circuit performance and reliability for deep-submicrometer CMOS devices at low-temperature operation is theoretically and experimentally examined. A simulator, which selects power-supply voltage and process/device parameters for low-temperature operation, has been developed. Based upon the simulated results, design optimization for low-temperature operation has been proposed to determine power-supply voltage and various process and device parameters. The optimized design has been demonstrated on a 0.3-μm CMOS device, by utilizing electron beam (EB) lithography· Excellent device characteristics and a functional ring oscillator circuit have been obtained at 77 K  相似文献   

13.
This paper describes the cryogenic operation of inverters fabricated in a partially depleted (PD) 1 μm Silicon-on-Insulator (SOI) CMOS technology. As is shown, the floating-body effects like the kink effect degrade the static transfer characteristics considerably. Generally, the effects aggravate upon cooling. Additionally, at deep cryogenic temperatures, e.g., 4.2 K, typical low-temperature anomalies, which are related to the device freeze-out, cause hysteresis effects. Ways for improvement are discussed and compared: As is shown, the PD SOT inverter anomalies can be largely reduced by using the so-called twin-gate configuration  相似文献   

14.
A low-noise CMOS readout preamplifier operating at liquid helium temperatures is described, In conjunction with magnetic field sensors applying SQUIDs (superconducting quantum interference devices) the preamplifier can be used to measure biomagnetic fields of human brain and heart noninvasively. The input of the folded cascode amplifier can be attached directly to a low impedance SQUID output. This way the commonly used discrete LC tank resonator circuit for impedance matching can be omitted. An equivalent noise voltage density of 0.3 nV/√Hz at 500 kHz has been measured. Despite the occurrence of the kink effect and other abnormalities in MOS transistor characteristics at 4.2 K, during the tests no abnormal operation has been observed. Such a preamplifier circuit is essential in simplifying the expensive shielding currently used in biomagnetic diagnosis systems  相似文献   

15.
A shift-and-ratio method for extracting MOSFET channel length is presented. In this method, channel mobility can be any function of gate voltage, and high source-drain resistance does not affect extraction results. It is shown to yield more accurate and consistent channel lengths for deep-submicrometer CMOS devices at room and low temperatures. It is also found that, for both nFET and pFET, the source-drain resistance is essentially independent of temperature from 300 to 77 K  相似文献   

16.
The operation of discrete and integrated CMOS ring oscillators was evaluated over the temperature range 77-300 K. Gate delays typically decreased by a factor of two at 77 K. Hot-carrier effects were enhanced by low-temperature operation, and transistor transconductance degradation occurred at low temperatures, which did not occur at room temperature as measured in the forward and inverse transistor curves. In marked contrast to dc stressing, ac stressing caused very little circuit degradation at low temperatures. By modeling the low-temperature phenomena at the MOSFET source junction, both hot-electron and hot-hole carrier effects were analyzed.  相似文献   

17.
Application of insulated-gate inverted-structure HEMT (I2-HEMT) to the enhancement/depletion (E/D) type direct-coupled FET logic circuits has been investigated. Superior electric characteristics were attained in a submicrometer-gate FET and ring oscillator. The threshold voltage shift with a reduction of gate length from 1.2 to 0.7 µm was as small as -0.05 V at 300 K. Drain conductances were very small and were 2.0 and 3.6 mS/mm at 300 and 77K, respectively. Gate leakage current was small enough even at a gate voltage of + 1.4 V both at 300 and 77 K, and a logic swing of larger than 1.2 V was achieved using a DCFL inverter. A 21-stage E/D-type DCFL ring oscillator with an 0.8-µm gate length showed a minimum gate delay of as small as 18.0 ps at a low power dissipation of 520 µW/gate at 77 K. High-speed and large logic-swing characteristics of the I2-HEMT DCFL circuits are accomplished by forming an undoped AlGaAs layer as a gate insulator on the inverted-structure HEMT structure.  相似文献   

18.
The fabrication of fifteen-stage ring oscillators and static flip-flop frequency dividers with 0.2-μm gate-length AlInAs/GaInAs HEMT technology is described. The fabricated HEMT devices within the circuits demonstrated a gm transconductance of 750 mS/mm and a full-channel current of 850 mA/mm. The measured cutoff frequency of the device is 120 GHz. The shortest gate delay measured for buffered-FET-logic (BFL) ring oscillators at 300 K was 9.3 ps at 66.7 mW/gate (fan-out=1); fan-out sensitivity was 1.5 ps per fanout. The shortest gate delay measured for capacitively enhanced logic (CEL) ring oscillators at 300 K was 6.0 ps at 23.8 mW/gate (fan-out=1) with a fan-out sensitivity of 2.7 ps per fan-out. The CEL gate delay reduced to less than 5.0 ps with 11.35-mW power dissipation when measured at 77 K. The highest operating frequency for the static dividers was 26.7 GHz at 73.1 mW and 300 K  相似文献   

19.
Digital CMOS IC's in 6H-SiC operating on a 5-V power supply   总被引:7,自引:0,他引:7  
A CMOS technology in 6H-SiC utilizing an implanted p-well process is developed. The p-wells are fabricated by implanting boron ions into an n-type epilayer. PMOS devices are fabricated on an n-type epilayer while the NMOS devices are fabricated on implanted p-wells using a thermally grown gate oxide. The resulting NMOS devices have a threshold voltage of 3.3 V while the PMOS devices have a threshold voltage of -4.2 V at room temperature. The effective channel mobility is around 20 cm 2/Vs for the NMOS devices and around 7.5 cm2/Vs for the PMOS devices. Several digital circuits, such as inverters, NAND's, NOR's, and 11-stage ring oscillators are fabricated using these devices and exhibited stable operation at temperatures ranging from room temperature to 300°C. These digital circuits are the first CMOS circuits in 6H-SiC to operate with a 5-V power supply for temperatures ranging from room temperature up to 300°C  相似文献   

20.
The operation speed of a 73-stage CMOS ring oscillator with 0.5 μm channel lengths has been investigated. By employing a capacitance-reduced structure, gate delays of 47.4 ps and 49.3 ps with and without substrate bias at room temperature, and of 43.0 ps at 77 K, respectively, have been experimentally obtained at a supply voltage of 5 V. From the evaluation of parasitic capacitances, the speed which is achievable by the proper scaling of the device parameters at a half-micron design rule is estimated to be approximately 30 ps  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号