首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 421 毫秒
1.
为解决脉冲激光二极管端面泵浦激光晶体瞬态热效应问题,构建了激光二极管端面泵浦激光晶体热模型,运用解析分析法研究了Nd:GdVO4晶体的瞬态温场分布.考虑到Nd:GdVO4晶体具有热传导各向异性的特点,采用了各向异性热传导方程,得到了超高斯激光脉冲端面泵浦Nd:GdVO4晶体准热平衡态时激光晶体温度场的一般解析表达式.同时对脉冲激光的超高斯阶次、高斯半径、泵浦功率以及脉宽对Nd:GdVO4晶体瞬态温场的影响进行了定量分析与计算.研究结果表明:若使用泵浦功率为40W,脉冲频率为100 Hz,脉宽为80 ms的2阶超高斯分布脉冲激光泵浦Nd:GdVO4(钕离子掺杂质量分数为1.2%)晶体,达到准热平衡状态时温度在28.8~38.1℃之间成锯齿形周期分布,随着温度场周斯性分布,晶体表面的热形变量也在0.065 μm和0.092 μm做周期性变化.该结果对热焦距变化范围以及对热不敏谐振腔设计具有理论指导意义.  相似文献   

2.
为解决脉冲激光二极管端面泵浦激光晶体瞬态热效应问题,构建了激光二极管端面泵浦激光晶体热模型,运用解析分析法研究了Nd∶GdVO4晶体的瞬态温场分布。考虑到Nd∶Gd-VO4晶体具有热传导各向异性的特点,采用了各向异性热传导方程,得到了超高斯激光脉冲端面泵浦Nd∶GdVO4晶体准热平衡态时激光晶体温度场的一般解析表达式。同时对脉冲激光的超高斯阶次、高斯半径、泵浦功率以及脉宽对Nd∶GdVO4晶体瞬态温场的影响进行了定量分析与计算。研究结果表明:若使用泵浦功率为40 W,脉冲频率为100 Hz,脉宽为80 ms的2阶超高斯分布脉冲激光泵浦Nd∶GdVO4(钕离子掺杂质量分数为1.2%)晶体,达到准热平衡状态时温度在28.8~38.1℃之间成锯齿形周期分布,随着温度场周斯性分布,晶体表面的热形变量也在0.065μm和0.092μm做周期性变化。该结果对热焦距变化范围以及对热不敏谐振腔设计具有理论指导意义。  相似文献   

3.
史彭  白冰  李隆  张琳丽  辛宇 《激光技术》2013,37(3):321-325
为了准确研究LD端面抽运圆棒热容激光晶体Nd:YAG时产生的热效应,采用以半解析热分析理论为基础、结合弹性力学理论的研究方法,得出了圆棒热容激光晶体抽运阶段和冷却阶段的温度场、热应力场和端面形变量半解析计算方法。结果表明,当抽运总功率为200W,4阶超高斯LD对Nd:YAG抽运2s时,Nd:YAG圆棒热容激光晶体的端面最大应力为52.9MPa,低于晶体断裂阈值下线的50%;此时激光晶体端面形变为3.05μm。所得结果为优化热容激光器提供了理论支持。  相似文献   

4.
抽运光分布对Nd:YAG微片激光器热效应的影响   总被引:8,自引:5,他引:3  
史彭  李金平  李隆  甘安生 《中国激光》2008,35(5):643-646
以半解析热分析理论为基础,研究超高斯分布激光二极管(LD)端面抽运背冷式微片Nd:YAG晶体的热效应。通过对超高斯分布激光二极管端面抽运背冷式微片Nd:YAG晶体工作特点分析建立热模型,利用热传导方程新的求解方法得出微片Nd:YAG晶体内部温度场、热形变场、附加光程差(OPD)半解析计算表达式;利用附加光程差得出微片Nd:YAG晶体的热焦距计算表达式。研究结果表明,当使用总功率为24.2 kW,10%占空比4阶超高斯分布激光二极管抽运时,微片上获得70.36℃最高温升,0.465μm最大热形变,0.836μm最大附加光程差。  相似文献   

5.
为解决脉冲激光二极管端面泵浦Nd:YAG晶体产生瞬态热效应的问题,对激光晶体内的温场分布进行了解析分析与定量计算。通过对脉冲激光二极管端面泵浦激光晶体工作特点分析,建立了端面绝热、周边恒温的晶体热模型,考虑到Nd:YAG晶体导热系数与其温度的函数关系,引入弦截法求解含时热传导方程,得出了变热传导系数方形Nd:YAG晶体时变温度场的一般解析表达式。定量分析了变热传导系数方形Nd:YAG晶体在不同超高斯阶次和光斑半径下内部温度场时变情况。计算结果表明:使用平均输出功率为60 W 的脉冲激光二极管端面泵浦掺钕离子质量分数1.0%的Nd:YAG 晶体,若入射的3阶超高斯光束泵浦光光斑半径为400 m,则晶体尺寸为4 mm4 mm8 mm的Nd:YAG晶体在达到准热平衡状态时的最高和最低温升分别为364 K和337 K。研究结果为正确计算Nd:YAG晶体温度场分布提供了方法,并对解决激光晶体热效应问题提供了理论依据。  相似文献   

6.
董武威  李隆  史彭  许启明 《激光技术》2009,33(6):633-637
为了研究半导体激光器端面抽运激光晶体产生的热效应问题,采用解析分析的方法研究端面抽运激光晶体的温升以及热形变量的大小.通过激光晶体工作特点分析,考虑到Nd:GdVO4晶体热传导各向异性的特点,采用各向异性传热的Poisson方程,得出了超高斯光束端面抽运Nd:GdVO4晶体温度场以及热形变场的一般解析表达式.并定量分析了超高斯光束不同阶次、不同光斑尺寸抽运时对于Nd:GdVO4晶体温度场以及热形变场的影响.结果表明,若半导体激光器的输出功率为30W,光学聚焦耦合器传输效率为8%,阶超高斯光束沿中心端面抽运掺钕离子原子数分数为0.012的Nd:GdVO4晶体,抽运面可获得419.3℃的最大温升,并产生0.711m的热形变.该结果对估算Nd:GdVO4晶体热焦距变化范围以及进行热不敏谐振腔设计具有理论指导作用.  相似文献   

7.
光纤耦合LD端面抽运Nd:GdVO4晶体材料热效应分析   总被引:4,自引:3,他引:1  
为了研究半导体激光器端面抽运激光晶体产生的热效应问题,采用解析分析的方法研究端面抽运激光晶体的温升以及热形变量的大小.通过激光晶体工作特点分析,考虑到Nd:GdVO_4晶体热传导各向异性的特点,采用各向异性传热的Poisson方程,得出了超高斯光束端面抽运Nd:GdVO_4晶体温度场以及热形变场的一般解析表达式.并定量分析了超高斯光束不同阶次、不同光斑尺寸抽运时对于Nd:GdVO_4晶体温度场以及热形变场的影响.结果表明,若半导体激光器的输出功率为30W,光学聚焦耦合器传输效率为85%,5阶超高斯光束沿中心端面抽运掺钕离子原子数分数为0.012的Nd:GdVO_4晶体,抽运面可获得419.3℃的最大温升,并产生0.711μm的热形变.该结果对估算Nd:GdVO_4晶体热焦距变化范围以及进行热不敏谐振腔设计具有理论指导作用.  相似文献   

8.
准连续激光二极管(LD)泵浦的激光晶体中存在着温度升降的变化过程.为解决准连续LD端面泵浦Nd∶YAG薄片时变热效应问题,基于热传导方程,采用特征函数法和常数变异法得到了准连续超高斯光束端面泵浦Nd∶YAG薄片的瞬态温度场一般解析表达式.定量分析了准连续泵浦光脉宽和占空比对Nd∶ YAG薄片瞬态温度场的影响.研究结果表明,准连续LD端面泵浦Nd∶YAG薄片时,薄片内温度场随时间呈波浪状分布,再经过一段时间后呈现出稳定周期性分布,此时的瞬态温度场围绕连续LD泵浦时稳态温度波动,波动幅度为12.1℃,薄片的瞬态温升量将随准连续LD泵浦脉宽与占空比的增大而升高.研究方法和所得结果还可以应用到激光系统的其他瞬态热问题研究中,对解决激光系统热问题具有理论指导作用.  相似文献   

9.
以半解析热分析理论为基础,研究了超高斯分布激光二极管(LD)端面抽运背冷式方形Nd:GdVO4微片晶体的热效应.通过对激光晶体工作特点的分析,建证热模型,利用新的热传导方程求解方法,得出了背冷式方形Nd:GdVO4微片晶体内部温度场、热形变场的半解析计算表达式.研究结果表明,当使用输出功牢为700 W的LD(超高斯阶次为4)端面中心入射背冷方形Nd:GdVO4晶体(晶体掺钕原子数分数为1.2%)时,在抽运端面中心获得69.6℃最高温升和74.1 nm最大热形变量,与实验结果一致.得出的方法可以应用到其他激光晶体热问题研究中.  相似文献   

10.
准连续激光二极管(LD)泵浦的激光晶体中存在着温度升降的变化过程。为解决准连续LD端面泵浦Nd∶YAG薄片时变热效应问题,基于热传导方程,采用特征函数法和常数变异法得到了准连续超高斯光束端面泵浦Nd∶YAG薄片的瞬态温度场一般解析表达式。定量分析了准连续泵浦光脉宽和占空比对Nd∶YAG薄片瞬态温度场的影响。研究结果表明,准连续LD端面泵浦Nd∶YAG薄片时,薄片内温度场随时间呈波浪状分布,再经过一段时间后呈现出稳定周期性分布,此时的瞬态温度场围绕连续LD泵浦时稳态温度波动,波动幅度为12.1℃,薄片的瞬态温升量将随准连续LD泵浦脉宽与占空比的增大而升高。研究方法和所得结果还可以应用到激光系统的其他瞬态热问题研究中,对解决激光系统热问题具有理论指导作用。  相似文献   

11.
为了解决激光二极管泵浦激光晶体产生的热效应问题,对激光晶体内的温升进行了解析分析与定量计算。通过对激光二极管端面泵浦激光晶体工作特点的分析,建立了符合实际工作情况的热模型。考虑到晶体材料热传导系数受其宏观温度变化的影响,应用常数变易法以及特征函数法得到了变热传导系数Nd:YAG晶体棒在端面泵浦情况下温度场的一般表达式。定量计算了激光二极管超高斯分布泵浦光阶次、泵浦功率、光斑尺寸以及晶棒半径对其温度场分布的影响。研究结果表明:使用输出功率为60 W的激光二极管端面泵浦掺钕离子质量分数1.0%的Nd:YAG晶棒,若耦合入射的3阶超高斯光束泵浦光斑半径为400μm,晶棒半径为1.5 mm,长度为8 mm时,Nd:YAG棒内最大温升为343.9℃;而将其热导率视为定值时,晶体的最大温升只有222.7℃。研究结果为正确计算Nd:YAG晶体温度场分布提供了方法,并为提高全固态Nd:YAG激光器性能提供了理论依据。  相似文献   

12.
脉冲激光二极管端面泵浦Nd;YAG棒时变温度场   总被引:3,自引:3,他引:0  
在脉冲激光二极管(LD)泵浦的激光晶体中存在升降温的时变过程,为解决脉冲LD端面泵浦的激光晶体产生的热效应问题,基于热传导方程,采用特征函数法和常数变异法得到了脉冲超高斯光束端面泵浦Nd∶YAG棒的时变温度场的一般解析表达式.同时定量分析了单脉冲和重复脉冲端面泵浦Nd∶YAG棒的时变温度规律.研究结果表明,重复脉冲端面...  相似文献   

13.
LD端面抽运变导热系数Nd:YAG晶体热效应   总被引:1,自引:1,他引:0  
李隆  甘安生  齐兵  支音  王良甚  史彭 《激光技术》2012,36(5):612-616
为了计算二极管抽运Nd:YAG晶体温度场及热形变场,建立了端面绝热、周边恒温的晶体热模型。基于Nd:YAG晶体导热系数及热形变系数与其温度的函数关系,应用Newton切线法对热传导方程进行求解,得到了变导热系数和变热形变系数矩形截面Nd:YAG晶体端面抽运下的温度场和热形变场的一般表达式,同时计算了Nd:YAG晶体在不同抽运功率和抽运光斑半径下内部温度场和热形变场的分布变化。结果表明,使用钕离子质量分数为0.01、尺寸为3mm×3mm×8mm的Nd:YAG晶体,在功率为60W、光斑半径为450μm的抽运光照射下,变导热系数的Nd:YAG晶体端面最大温升为55.7℃,最大热形变量为2.85μm,而按传统将Nd:YAG晶体导热系数、热形变系数均视为定值时,晶体端面最大温升为43.4℃,端面最大热形变为2.84μm。  相似文献   

14.
李隆  张秋娟  张春玲  杨毅然 《红外与激光工程》2021,50(11):20200495-1-20200495-7
为减弱脉冲激光二极管巴条侧面泵浦Nd:YAG陶瓷激光器热效应影响,提高谐振腔稳定性以及改善激光器性能,文中利用热传导理论对脉冲激光二极管巴条侧泵激光陶瓷产生的温升及热形变场进行了解析研究。依据脉冲激光二极管巴条侧面泵浦激光陶瓷工作状态分析,建立契合实际的热分析模型,通过热传导Poisson方程求解,得到单脉冲侧泵激光陶瓷泵浦时段与泵浦间期两个阶段温度场与热形变场的一般解析表达式。定量地分析了脉冲二极管巴条侧面泵浦Nd:YAG陶瓷三维温场分布、重复脉冲泵浦过程中温度场分布,以及不同泵浦参数对温场的影响,定量分析了达到热动态平衡时泵浦面的热形变量。计算结果表明:当泵浦光功率为60 W,重复频率为100 Hz,束腰半径为150 μm,钕离子掺杂质量分数为1.0 %时,Nd:YAG陶瓷泵浦面产生29.6 ℃的温升,泵浦面与通光面产生0.95 μm和0.99 μm的热形变量。激光陶瓷温度场解析方法解决了使用数值分析法造成研究精确度不高的问题,该方法还可以应用到激光系统的其他热问题研究中,为减弱激光系统中的热问题提供了理论依据。  相似文献   

15.
脉冲激光二极管端面抽运全固态激光器热效应瞬态过程   总被引:4,自引:1,他引:4  
从圆柱状晶体热传导方程出发,采用有限元方法,对脉冲激光二极管(LD)端面抽运Nd∶YAG激光器中激光晶体的瞬态温度场分布进行了计算.对单脉冲过程中,晶体升温和降温时端面温度的分布情况进行了计算;分析了束腰位置和束腰半径对单脉冲过程的影响,以及晶体热弛豫时间的影响因素;根据光线追迹理论,分析了激光晶体内温度分布达到动态平衡后,由温度梯度引起的中心与边缘相对光程差时变特性.结果表明,当束腰位于晶体抽运端面时,增大束腰半径晶体端面温度降低;当不改变束腰半径并且后移束腰位置时,晶体端面温度降低;增大冷却液对流换热系数或者空气流速、降低空气温度以及减小晶体半径都可不同程度地缩短热弛豫时间;当晶体温度分布达到动态平衡后,晶体内各点温度呈周期性变化;由晶体径向温度梯度引起的相对光程差(OPD)也随时间作周期性变化.  相似文献   

16.
史彭  李隆  甘安生  陈文 《中国激光》2006,33(10):1324-1328
以解析分析理论为基础,研究圆截面Nd∶GdVO4激光晶体受到具有高斯分布半导体激光端面中心入射时,晶体温度场分布和抽运面热形变分布情况。通过对激光二极管(LD)端面入射晶体工作特点分析,建立了符合实际工作情况的热模型,利用热传导方程新求解方法,得出了圆形截面Nd∶GdVO4晶体温度场分布和端面热形变场通解表达式,对比分析了圆形截面和矩形截面Nd∶GdVO4晶体的热形变。研究结果表明,当使用输出功率为15 W激光二极管端面中心入射Nd∶GdVO4激光晶体时,在抽运端面中心获得187.5℃最高温升和1.313μm最大热形变量。两种截面晶体具有相同的热形变形状,当截面尺寸不太大时,如果圆形截面晶体的半径等于矩形截面晶体半边长,最大热形变量将减少4.1%。这种方法还可以应用到其他圆形截面晶体热问题研究中,为有效解决激光系统热问题提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号