首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
综合论述了GaAs和GaN微波毫米波的收发多功能芯片、幅相多功能芯片和GaAs限幅放大器集成芯片的发展状况、电路结构和性能特性,简述了收发多功能中的功率放大器和低噪声放大器的设计方法、幅相多功能中数字移相器和衰减器的设计方法,给出了限幅低噪声放大器中限幅器的设计参考。  相似文献   

2.
描述了基于CMOS工艺的双带低噪声放大器的设计,其目的是用单个低噪声放大器取代双带收发机(如符合IEEE 802.11a和802.11b/g标准的WLAN)中的两个单独的低噪声放大器.讨论了输入功率和噪声的双带同时匹配以及负载对增益的影响.芯片的加工工艺是0.25μm CMOS混合及射频工艺.并总结和分析了芯片的测试结果.  相似文献   

3.
本文首先介绍了低噪声放大器的设计理论与方法,接着详细的说明了利用ADS软件仿真和设计的过程,得出了工作频率在1.8-2.2GHz的低噪声放大器的封装模型,仿真结果表明,放大器达到了预设的技术指标,性能较好,可用于接收机前端使用.  相似文献   

4.
设计了一种宽带、噪声系数仅为0.48dB的有源偏置超低噪声放大器。低噪声放大器采用0.5μm GaAs E-PHEMT工艺研制,2.0mm×2.0mm×0.75mm 8-pin双侧引脚扁平无铅封装,具有低噪声、高增益、高线性等特点,是GSM/CDMA基站应用上理想的一款低噪声放大器。  相似文献   

5.
低电压低功耗CMOS射频低噪声放大器的研究进展   总被引:4,自引:1,他引:3  
曹克  杨华中  汪蕙 《微电子学》2003,33(4):317-323
由于无线移动终端重量、体积以及成本等各方面的限制,电路必须满足低电压、低功耗的要求。在CMOS射频低噪声放大器中,如何在满足性能指标要求的同时降低电源电压和功耗,已成为当前研究的热点。文章综述了几种降低CMOS低噪声放大器电源电压和功耗的方法,讨论了一些相关的设计问题。最后,展望了低电压、低功耗CMOS低噪声放大器的未来发展趋势。  相似文献   

6.
冯东  石秉学 《半导体学报》2004,25(9):1055-1060
描述了基于CMOS工艺的双带低噪声放大器的设计,其目的是用单个低噪声放大器取代双带收发机(如符合IEEE 80 2 .11a和80 2 .11b/g标准的WL AN)中的两个单独的低噪声放大器.讨论了输入功率和噪声的双带同时匹配以及负载对增益的影响.芯片的加工工艺是0 .2 5μm CMOS混合及射频工艺.并总结和分析了芯片的测试结果  相似文献   

7.
基于提升GaAs低噪声放大器(LNA)的抗静电(ESD)能力的需求,且实现器件小型化轻量化,设计了一种S波段GaAs低噪声放大器的ESD防护电路,该电路利用1/4波长线的微波特性,通过1/4波长微带线并联在GaAs芯片的输入输出端,瞬态二极管(TVS)并联在芯片的电源端,不改变器件原有封装尺寸的条件下构成保护结构.基于ESD人体模型,运用静电模拟仪器对低噪声放大器进行了模拟试验,并对其性能进行了测试.结果表明,在6.5 mm×6.5 mm×2.4 mm的封装尺寸下,器件的抗静电能力从250 V提高到了1 000 V,在频率为2.6~3.7 GHz,带内增益大于25 dB,增益平坦度小于-±0.5 dB,噪声系数小于1.5 dB,满足高可靠领域应用的要求.  相似文献   

8.
超宽带低噪声放大器的计算机辅助设计   总被引:1,自引:0,他引:1  
叙述了超宽带低噪声放大器的计算机辅助设计方法,提出了利用普通微带混合集成电路.工艺设计超宽带低噪声放大器的方法和关键技术,并且用带封装的BJT和FET实现了两个超宽带低噪声放大器。实验结果和设计结果吻合较好。一个利用2SC3358,放大器为三级,频带为30kHZ~1600MHZ,增益G=20±1dB,噪声系数NF≤3.5dB;另一个利用ATF10235(6),放大器为二级,频带为500kHZ~6000MHZ,增益G=20±2dB,噪声系数NF≤2dB。  相似文献   

9.
吕育泽  李晋  万天才 《微电子学》2018,48(3):285-288
采用0.18 μm SiGe BiCMOS工艺,设计了一种应用于全球导航卫星系统的低噪声放大器。该低噪声放大器采用小型化栅格阵列封装,内部集成了旁路控制单元,所有I/O端口均加入了ESD保护电路。对封装后的芯片进行了测试。结果表明,在GNSS频率范围内,该芯片的正向增益为20.1 dB,噪声系数小于1.1 dB,输入1-dB压缩点和输入3阶交调点分别为-12 dBm和-5 dBm,在2.7 V电源电压下消耗电流3.7 mA,芯片尺寸为0.63 mm× 0.64 mm。  相似文献   

10.
2.5 GHz RF功率放大器和低噪声放大器模块的设计与实现   总被引:2,自引:0,他引:2  
李树翀  韩振宇  吴德馨 《微电子学》2005,35(1):18-20,24
功率放大器(PA)和低噪声放大器(LNA)模块是射频(RF)混合集成电路的重要组成部分.文章介绍了2.5 GHz功率放大器和低噪声放大器的设计及其实现过程;阐述了模块中微带线的设计,以及倒扣封装的实现.该模块具有良好的线性度、较大的线性空间、稳定的增益,符合设计要求.  相似文献   

11.
采用GaAs增强型pHEMT工艺,将限幅器和低噪声放大器集成在同一衬底,设计了一款用于5~6 GHz的限幅低噪声放大器。限幅器采用PIN二极管进行设计,低噪声放大器采用并联负反馈、源级电感负反馈以及电流复用结构,减小功耗的同时改善了增益平坦度和稳定性。测试结果表明,在工作频带内,限幅低噪声放大器的增益为27±0.2 dB,噪声系数为1.1~1.3 dB,总功耗为240 mW,耐功率大于46 dBm(2 ms脉宽,30%占空比),芯片尺寸为3.3 mm×1.3 mm。  相似文献   

12.
张磊  付兴昌  刘志军  徐伟 《半导体技术》2017,42(8):586-590,625
基于GaN高电子迁移率晶体管(HEMT)工艺设计制作了一款收发(T/R)多功能芯片(MFC),主要用于射频前端收发系统.该芯片集成了单刀双掷(SPDT)开关用于选择接收通道或发射通道工作,芯片具有低噪声性能、高饱和输出功率和高功率附加效率等特点.芯片接收通道的LNA采用四级放大、单电源供电、电流复用结构,发射通道的功率放大器采用三级放大、末级四胞功率合成结构,选通SPDT开关采用两个并联器件完成.采用微波在片测试系统完成该芯片测试,测试结果表明,在13~ 17 GHz频段内,发射通道功率增益大于17.5 dB,输出功率大于12W,功率附加效率大于27%.接收通道小信号增益大于24 dB,噪声系数小于2.7 dB,1 dB压缩点输出功率大于9 dBm,输入/输出电压驻波比小于1.8∶1,芯片尺寸为3.70 mm×3.55 mm.  相似文献   

13.
方园  叶显武  吴洪江  刘永强 《半导体技术》2018,43(3):167-170,210
采用GaAs赝配HEMT单片微波集成电路(MMIC)工艺和堆栈偏置技术设计实现了一款Q波段低噪声放大器(LNA)芯片.该放大器采用4级级联的堆栈偏置拓扑结构,前两级电路在确保较低输入回波损耗的同时优化了放大器的噪声系数,后两级电路则采用最大增益的匹配方式,确保放大器具有良好的增益平坦度和较小的输出回波损耗.该LNA芯片最终尺寸为3 250 μm×1 500 μm,实测结果表明在40~46 GHz工作频率内放大器工作稳定,小信号增益大于23 dB,噪声系数小于3.0 dB,在4.5V工作电压下消耗电流约6 mA.此外,在片实测结果和设计结果符合良好.  相似文献   

14.
This paper presents a direct‐conversion CMOS transceiver for fully digital DS‐UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase‐locked loop (PLL), and a voltage controlled oscillator (VCO). A single‐ended‐to‐differential converter is implemented in the down‐conversion mixer and a differential‐to‐single‐ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 mm2 die using standard 0.18 µm CMOS technology and a 64‐pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low‐power, and high‐speed wireless personal area network.  相似文献   

15.
徐鑫  张波  徐辉  王毅 《微波学报》2015,31(1):83-87
采用GaAs 0.13μmp HEMT MMIC流片工艺设计和制作了一种S频段双通道低噪声放大器芯片,芯片内部集成了两个低噪声放大器通道、一级单刀双掷(SPDT)开关和一个晶体管-晶体管逻辑(TTL)电平转换电路。低噪声放大器电路采用一级共源共栅场效应管(Cascode FET)结构实现,使其具有比单管更高的增益,简化了芯片拓扑,降低了芯片设计难度。经流片测试,在1.9~2.1GHz的工作频带内,芯片噪声系数优于1.4dB,增益大于22.5dB,输入驻波优于1.8,输出驻波优于1.4,输出1dB压缩点(P1dB)为10dBm。大量芯片样本在片测试统计数据表明该低噪声放大器成品率大于90%,性能指标优于目前同类商业芯片指标。  相似文献   

16.
In this paper, the implementations of a 0.1 µm gallium arsenide (GaAs) pseudomorphic high electron mobility transistor process for a low noise amplifier (LNA), a subharmonically pumped (SHP) mixer, and a single‐chip receiver for 70/80 GHz point‐to‐point communications are presented. To obtain high‐gain performance and good flatness for a 15 GHz (71 GHz to 86 GHz) wideband LNA, a five‐stage input/output port transmission line matching method is used. To decrease the package loss and cost, 2nd and 4th SHP mixers were designed. From the measured results, the five‐stage LNA shows a gain of 23 dB and a noise figure of 4.5 dB. The 2nd and 4th SHP mixers show conversion losses of 12 dB and 17 dB and input P1dB of –1.5 dBm to 1.5 dBm. Finally, a single‐chip receiver based on the 4th SHP mixer shows a gain of 6 dB, a noise figure of 6 dB, and an input P1dB of –21 dBm.  相似文献   

17.
This paper presents an active patch array designed at 24 GHz. It can be used as a front-end component for a phased array. A series resonant array structure is chosen which is compact and easy excite. With 5 elements, the array proved a 12-dB antenna gain. A power amplifier and a low noise amplifier are designed on a single GaAs chip (PALNA). Bias switch is used in the PALNA, which greatly reduces the switch loss in a transceiver and increases the efficiency. 20-dB small signal gain is achieved in both power amplifier and low noise amplifier. The active patch array is built by the combination of the patch array and PALNA. The measured active gain of this antenna is 35-dB for the PA mode and 31-dB for the LNA mode. This active patch array can obtain an EIRP of 34 dBm with a total radiated power of 22dBm and a maximum PAE of 32%. To check the noise performance, we applied sources at both normal temperature and 77K (liquid nitrogen) and extracted the noise figure (3.5 dB) of the active antenna by the Y factor method. The results proved that the active antenna is working efficiently as both a transmitting and receiving antenna.  相似文献   

18.
采用SMIC0.13μmRFCMOS工艺设计,并实现了应用于无线传感网络的2.4GHz差分低功耗低噪声放大器。在低功耗约束下,电路采用差分共源共栅源极退化电感结构。考虑了ESD保护PAD和封装等寄生电容,分析了输入阻抗匹配、增益、噪声和线性度,提出了低功耗条件下输入阻抗匹配和噪声优化措施。芯片测试结果显示,噪声系数NF为2.5dB,输出采用片外无源网络匹配下功率增益S21为9.4dB,输入三阶交调点IIP3为-1.5dBm。在1.2V电源电压下消耗电流3.3mA。芯片面积为860μm×680μm。  相似文献   

19.
介绍了一种基于0.35μm CMOS数字工艺、集成于单片蓝牙收发器中的射频低噪声放大器.在考虑ESD保护和封装的情况下,从噪声优化、阻抗匹配及增益的角度讨论了电路的设计方法.经测试,在2.05GHz的中心频率处,S11为-6.4dB,S21为11dB,3dB带宽约为300MHz,噪声系数为5.3dB.该结果表明,射频电路设计需要全面考虑寄生效应,需要合适的封装模型以及合理的工艺.  相似文献   

20.
Wide frequency bandwidth has been internationally allocated for unlicensed operation around the oxygen absorption frequency at 60 GHz. A power amplifier and a low noise amplifier are presented as building blocks for a T/R-unit at this frequency. The fabrication technology was a commercially available 0.15 m gallium arsenide (GaAs) process featuring pseudomorphic high electron mobility transistors (PHEMT). Using on-wafer tests, we measured a gain of 13.4 dB and a +17 dBm output compression point for the power amplifier at 60 GHz centre frequency when the MMIC was biased to 3 volts Vdd. At the same frequency, the low noise amplifier exhibited 24 dB of gain with a 3.5 dB noise figure. The AM/AM and AM/PM characteristics of the power amplifier chip were obtained from the large-signal S-parameter measurement data. Furthermore, the power amplifier was assembled in a split block package, which had a WR-15 waveguide interface in input and output. The measured results show a 12.5 dB small-signal gain and better than 8 dB return losses in input and output for the packaged power amplifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号