共查询到19条相似文献,搜索用时 93 毫秒
1.
低压中和化CMOS差分低噪声放大器设计 总被引:1,自引:0,他引:1
以设计低电压LNA电路为目的,提出了一种采用关态MOSFET中和共源放大器输入级栅漏寄生电容Cgd的CMOS差分低噪声放大器结构.基于该技术,采用0.35μmCMOS工艺设计了一种工作在5.8GHz的低噪声放大器.结果表明,在考虑了各种寄生效应的情况下,该低噪声放大器可以在0.75V的电源电压下工作,其功耗仅为2.45mW.在5.8GHz工作频率下:该放大器的噪声系数为2.9dB,正向增益S21为5.8dB,反向隔离度S12为-30dB,S11为-13.5dB. 相似文献
2.
3.
4.
5.
CMOS 射频低噪声放大器的设计 总被引:2,自引:0,他引:2
讨论了CMOS射频低噪声放大器的相关设计问题,对影响其增益、噪声系数、线性度等性能指标的因素进行了分析,并综述了几种提高其综合性能指标的方法。在此基础上,采用SMIC0.25μm CMOS工艺库,给出了3.8GHz CMOSLNA的设计方案。HSPICE仿真结果表明:电路的功率增益为13.48dB,输入、输出匹配良好,噪声系数为2.9dB,功耗为46.41mw。 相似文献
6.
7.
8.
提出了一种多频带低噪声放大器的设计方法,可用于集成多个频段于一部终端的通讯设备.它不同于以往的电路结构,而是由共栅极作为输入,与一个共源极MOS管构成两级放大器,并通过使用2 bit的控制信号控制电路中的MOS开关,以调节电路工作在900 MHz、1.7 GHz和2.4 GHz等三个不同的频带.电路使用先进的90nm工艺库进行仿真,结果显示各频带的增益均大于16 dB,噪声系数小于1.7 dB,三阶交调点IIP_3和1 dB增益压缩点分别大于-2.5 dBm和-15.5 dBm,电路同时具备了扩展并包含更多频带的能力. 相似文献
9.
基于共源共栅结构、并联负反馈和自适应有源偏置技术等设计了一款应用于 0.1 GHz~3 GHz的宽带低噪声放大器.共源共栅(Cascode)结构削弱米勒(Miller)效应,提高高频增益;并联负反馈结构能够压低低频增益,改善带内增益平坦度,同时改变输入和输出阻抗,改善端口回波;自适应有源偏置技术提高电路输出功率 1dB压缩点,改善线性度.电路采用GaAs PHEMT工艺进行流片加工,测试结果表明:LNA的带内增益≥19.5 dB,增益平坦度≤±0.6 dB,噪声系数≤1.2 dB,输出1dB压缩点≥20 dBm. 相似文献
10.
11.
设计了一种完全可以单片集成的低功耗高增益CMOS低噪声放大器(LNA).所有电感都采用片上螺旋电感,并实现了片上50 Ω的输入阻抗匹配.文中设计的放大器采用TSMC0.18 μmCMOS工艺,用HSPICE模拟软件对其进行了仿真,并进行了流片测试.结果表明,所设计的低噪声放大器结构简单,极限尺寸为0.18 μm,当中心频率fo为2.4 GHz、电源电压VDD为1.8 V时其功率增益S21为16.5 dB,但功耗Pd只有2.9 mW,噪声系数NF为2.4 dB,反向隔离度S12为-58 dB.由此验证了所设计的CMOS RF放大器可以在满足低噪声、低功耗、高增益的前提下向100 nm级的研发方向发展. 相似文献
12.
报道了基于0.25μm GaAs PHEMT工艺的2.8~4.2GHz MMIC低噪声放大器,详细介绍和分析了低噪声放大器的器件基础和设计原理,设计采用源极串联电感负反馈方法使输入阻抗共轭匹配和最小噪声匹配趋于一致,偏置网络采用自偏置栅压、单电源供电,并用ADS软件仿真。电路评估板选用Rogers RO4350B,在2.8~4.2GHz频段内测得增益大于20dB、增益平坦度小于2.5dB、噪声系数小于2.3dB、输入输出驻波比小于2.0。 相似文献
13.
低噪声放大器(LNA)在射频系统中是作为接收端的前端,其增益、噪声、非线性、匹配等性能对整个接收机至关重要。随着现代通信电子技术的发展,迫切需要低噪声、高增益、低偏置、小体积的射频放大器。我们利用Ansoft的设计软件designer,设计了用于1.5GHz的低噪声放大器,器件选用Philip公司的BFG425W双极晶体管,文章主要从共发LNA电路的噪声分析入手,通过对电路的分析与仿真,对其参数进行了优化,最后提出了几点改进的措施。 相似文献
14.
15.
基于提升GaAs低噪声放大器(LNA)的抗静电(ESD)能力的需求,且实现器件小型化轻量化,设计了一种S波段GaAs低噪声放大器的ESD防护电路,该电路利用1/4波长线的微波特性,通过1/4波长微带线并联在GaAs芯片的输入输出端,瞬态二极管(TVS)并联在芯片的电源端,不改变器件原有封装尺寸的条件下构成保护结构.基于ESD人体模型,运用静电模拟仪器对低噪声放大器进行了模拟试验,并对其性能进行了测试.结果表明,在6.5 mm×6.5 mm×2.4 mm的封装尺寸下,器件的抗静电能力从250 V提高到了1 000 V,在频率为2.6~3.7 GHz,带内增益大于25 dB,增益平坦度小于-±0.5 dB,噪声系数小于1.5 dB,满足高可靠领域应用的要求. 相似文献
16.
射频双向放大器作为雷达接收通道的前端模块芯片,其性能的优劣直接影响通道的性能。传统的双向放大器芯片往往是基于射频开关的拓扑结构设计的,在噪声性能和反向隔离度方面都有所不足。文中设计基于电源调制的双向放大器芯片,具有全新的电路拓扑结构,射频信号不通过射频开关而直接进入低噪声放大器,可以优化芯片的噪声性能;同时,截止的器件可以提高芯片的反向隔离度。设计中如何提高低噪声放大器的增益和噪声性能,以及如何利用有源滤波匹配技术实现射频输入输出端口的合并和匹配是两大难点和创新点。文中基于L 波段的双向放大器设计及流片的测试结果显示,芯片有良好的性能,充分验证了理论分析的正确性。 相似文献
17.
文中给出了一个应用于超宽带射频接收机中的全集成低噪声放大器,该低噪声放大器采用了电阻并联负反馈与源极退化电感技术的结合,为全差分结构,在Jazz0.18μm RF CMOS工艺下实现,芯片面积为1.08mm2,射频端ESD抗击穿电压为1.4kV。测试结果表明,在1.8V电源电压下,该LNA的工作频带为3.1~4.7GHz,功耗为14.9mW,噪声系数(NF)为1.91~3.24dB,输入三阶交调量(IIP3)为-8dBm。 相似文献
18.
采用0.25μm GaN HEMT制备工艺在AlGaN/GaN异质结材料上研制了高性能X波段GaN单片电路低噪声放大器.GaN低噪声单片电路采取两级微带线结构,10V偏压下芯片在X波段范围内获得了低于2.2 dB的噪声系数,增益达到18 dB以上,耐受功率达到了27 dBm.在耐受功率测试中发现GaN低噪声HEMT器件... 相似文献
19.
分析了一种射频COMS共源-共栅低噪声放大器的设计电路,采用TSMC 90nm低功耗工艺实现。仿真结果表明:在5.6GHz工作频率,电压增益约为18.5dB;噪声系数为1.78dB;增益1dB压缩点为-21.72dBm;输入参考三阶交调点为-11.75dBm。在1.2V直流电压下测得的功耗约为25mW。 相似文献