首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 322 毫秒

1.  基于改进稀疏编码的图像超分辨率算法  被引次数:1
   《计算机应用》,2014年第2期
   针对传统基于稀疏字典对的超分辨率(SR)算法训练速度慢、字典质量差、特征匹配准确性低的缺点,提出一种基于改进稀疏编码的图像超分辨率算法。该算法使用自适应阈值的形态组成分析(MCA)方法提取图像特征,并采用主成分分析算法对训练集进行降维,提高特征提取的有效性,缩短字典训练时间,减少过拟合现象。在字典训练阶段,使用改进的稀疏K-奇异值分解(K-SVD)算法训练低分辨率字典,结合图像块的重叠关系求解高分辨率字典,增强字典的有效性和自适应能力,同时极大地提高了字典的训练速度。在Lab颜色空间对彩色图像进行重建,避免由于颜色通道相关性造成的重建图像质量下降。与传统方法相比,该算法重建图像质量和计算效率更优。    

2.  基于自适应对偶字典的磁共振图像的超分辨率重建  
   刘振圻  包立君  陈忠《光电技术应用》,2013年第4期
   为了提高磁共振成像的图像质量,提出了一种基于自适应对偶字典的超分辨率去噪重建方法,在超分辨率重建过程中引入去噪功能,使得改善图像分辨率的同时能够有效地滤除图像中的噪声,实现了超分辨率重建和去噪技术的有机结合。该方法利用聚类—PCA算法提取图像的主要特征来构造主特征字典,采用训练方法设计出表达图像细节信息的自学习字典,两者结合构成的自适应对偶字典具有良好的稀疏度和自适应性。实验表明,与其他超分辨率算法相比,该方法超分辨率重建效果显著,峰值信噪比和平均结构相似度均有所提高。    

3.  基于预测稀疏编码的快速单幅图像超分辨率重建  
   沈辉  袁晓彤  刘青山《计算机应用》,2015年第35卷第6期
   针对经典的基于稀疏编码的图像超分辨率算法在重建过程中运算量大、计算效率低的缺点,提出一种基于预测稀疏编码的单幅图像超分辨率重建算法.训练阶段,该算法在传统的稀疏编码误差函数基础上叠加编码预测误差项构造目标函数,并采用交替优化过程最小化该目标函数;测试阶段,仅需将输入的低分辨图像块和预先训练得到的低分辨率字典相乘就能预测出重建系数,从而避免了求解稀疏回归问题.实验结果表明,与经典的基于稀疏编码的单幅图像超分辨率算法相比,该算法能够在显著减少重建阶段运算时间的同时几乎完全保留超分辨率视觉效果.    

4.  基于稀疏表示的含噪图像超分辨重建方法  
   窦诺  赵瑞珍  岑翼刚  胡绍海  张勇东《计算机研究与发展》,2015年第4期
   传统的含噪图像超分辨方法只能将图像去噪和图像超分辨分别进行处理,基于稀疏表示与字典训练的含噪声图像超分辨重建方法将两者融合在一起。提出一种基于图像块在训练字典下稀疏表示的协同处理方法,来解决含噪图像超分辨的问题。由于图像块可以由字典下的稀疏系数来表示,所以可训练一个分别适用于含噪低分辨率图像块和清晰高分辨率图像块的字典对,使得高低分辨率图像块在该字典对下具有相同的稀疏表示。当输入含噪低分辨率图像块时,先计算出其在低分辨率字典下的稀疏表示系数,然后利用此稀疏系数在高分辨率字典下进行重建,可得到清晰高分辨率图像块,最后通过整体优化完成清晰高分辨率图像,实现图像超分辨和图像去噪的目的。实验证明,采用局部自适应插值的方法放大低分辨率图像到中间分辨率再进行特征提取,比以往采用的双三线性插值的方法在重建图像质量上有提高,并通过研究字典λ参数的设置使得超分辨重建和去噪结果同时达到最佳,即在图像的视觉和质量上都具有较为明显的优势,具有很好的鲁棒性和有效性。    

5.  基于K近邻稀疏编码均值约束的人脸超分辨率算法  
   黄克斌  胡瑞敏  韩镇  卢涛  江俊君  王锋《计算机科学》,2013年第40卷第5期
   针对低分辨率、低质量人脸图像的超分辨率重建问题,提出了一种基于K近邻稀疏编码均值约束的人脸超分辨率算法。首先,根据人脸块位置先验信息,对训练样本图像块进行聚类,得到与输入人脸图像块位置一致的高、低分辨率稀疏表示字典对;然后,利用低分辨率字典,在稀疏和K近邻稀疏编码均值的共同约束下实现低分辨率图像块的稀疏表示;最后,通过系数映射,结合高分辨率字典实现高分辨率图像块重建,最终将所有高分辨率图像块进行交叠平均得到高分辨率人脸图像。实验结果验证了算法的有效性及先进性。本方法在保持重建人脸图像相似度的基础上,改善了人脸图像的清晰度,提高了超分辨率图像的质量。    

6.  图约束字典和加权稀疏表示人脸超分辨率算法  
   黄克斌《电视技术》,2014年第38卷第9期
   针对低分辨率、低质量人脸图像重建问题,提出了一种新的基于稀疏表示的人脸超分辨率算法。在训练阶段,人脸的位置特征被用于保持人脸块的全局信息,人脸块间的几何结构被用于保持高低分辨率超完备冗余字典的流形结构,从而提高字典的表达能力;在重建阶段,K近邻加权稀疏表示被用于消除稀疏编码噪声,以提高高分辨率人脸图像重建系数的精度。实验结果表明,提出的方法取得了较好的主客观质量。    

7.  稀疏字典编码的超分辨率重建?  
   李民  程建  乐翔  罗环敏《软件学报》,2013年第5期
   基于学习的超分辨率方法通常根据低分辨率图像从样本库中选取若干特征相似的匹配对象,再使用优化算法进行超分辨率估计,但其结果受匹配对象的质量限制,并且匹配特征一般只选择图像的几何结构信息,匹配准确性较低。提出了稀疏字典编码的超分辨率模型,将高、低分辨率图像特征块统一进行稀疏编码,建立高、低分辨率图像的稀疏关联,同步实现匹配搜索和优化估计,突破了上述方法的限制。应用形态分量分析法提取图像的特征数据,提高了特征匹配的准确性,并同步实现超分辨率重建和降噪功能。优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算速度。采用自然图像进行实验,与其他基于学习的超分辨率算法相比,重建所得到的图像质量更优。    

8.  稀疏字典编码的超分辨率重建  被引次数:2
   李民  程建  乐翔  罗环敏《软件学报》,2012年第23卷第5期
   基于学习的超分辨率方法通常根据低分辨率图像从样本库中选取若干特征相似的匹配对象,再使用优化算法进行超分辨率估计,但其结果受匹配对象的质量限制,并且匹配特征一般只选择图像的几何结构信息,匹配准确性较低.提出了稀疏字典编码的超分辨率模型,将高、低分辨率图像特征块统一进行稀疏编码,建立高、低分辨率图像的稀疏关联,同步实现匹配搜索和优化估计,突破了上述方法的限制.应用形态分量分析法提取图像的特征数据,提高了特征匹配的准确性,并同步实现超分辨率重建和降噪功能.优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算速度.采用自然图像进行实验与其他基于学习的超分辨率算法相比,重建所得到的图像质量更优.    

9.  一种基于MOD字典学习的图像超分辨率重建新算法  
   邹建成  张文婷《工程图学学报》,2015年第3期
   将低分辨率图像重建成高分辨率图像是图像处理领域中的一个重要课题。Yang提出一种基于联合字典学习的图像超分辨率重建算法,其算法样本选取与字典训练方法较为复杂。提出一种基于MOD字典学习的图像超分辨率重建新算法,首先采用少量的训练样本代替Yang的大量训练样本,然后使用MOD字典学习算法代替Yang的FFS字典学习算法,最后利用字典对图像进行稀疏表示与重建。实验结果表明,所提出的算法速度较快,并且重建图像的质量较高。    

10.  基于双正则化参数的在线字典学习超分辨率重建  
   倪浩  阮若林  刘芳华《计算机应用研究》,2016年第33卷第3期
   基于学习的单图超分辨率重建算法能获得较好的超分效果,但存在重建图像伪影较为明显的问题。为解决这一问题,提出了一种基于双正则化参数的在线字典学习超分辨率重建算法。在字典学习过程中运用在线字典学习方法(Online Dictionary Learning,ODL),并在稀疏字典生成阶段和图像重建阶段分别设置了两个不同的正则化参数。实验中生成的目标高分辨率图像PSNR比经典的稀疏编码超分方法(Sparse Coding Super-Resolution,SCSR)平均提高了0.39dB,较好地恢复图像边缘锐度和纹理细节的同时有效地抑制了伪影。ODL和双正则化参数的引入,提高了字典训练的精度,使字典训练和图像重建阶段的稀疏系数独立可调,实验中能够有效地消除伪影,提升了超分辨率重建的效果。    

11.  基于稀疏K-SVD的单幅图像超分辨率重建算法  
   陈亚运  蒋建国  王超《电视技术》,2015年第39卷第18期
   图像的超分辨率重建技术可以提升图像质量,改善图像视觉效果,在现实中具有很高的实用价值。针对基于K-SVD的超分辨率重建算法的不足,本文提出一种基于稀疏K-SVD的单幅图像超分辨率重建算法。首先,采用稀疏K-SVD方法进行训练获得高低分辨率字典对,以待重建的低分辨率图像及其降采样作为字典训练的样本,提高了字典和待重建的低分辨率图像的相关性;然后,采用逐级放大的思想进行重建;最后,利用非局部均值的方法,进一步提高重建效果。实验表明,与基于K-SVD的超分辨率重建算法相比,本文算法重建图像的峰值信噪比平均提高了0.6dB左右。重建图像在视觉效果上,也有一定程度的提升。    

12.  稀疏系数独立可调的单图超分辨率重建  
   倪浩  阮若林  刘芳华  王建峰《计算机应用》,2016年第4期
   针对基于学习的超分辨率重建图像边缘锐度较好但伪影较明显的问题,提出一种改进的稀疏系数独立可调的超分算法以消除伪影。由于字典训练阶段高分辨率图像和低分辨率图像均已知,认为高维图像空间和低维图像空间对应的稀疏系数不同,故此阶段运用在线字典学习方法分开训练生成较精确的高分字典和低分字典;而在图像重建阶段低分图像已知而高分图像未知,认为两空间的稀疏系数是近似相同的。通过在这两个阶段设置不同的正则化参数,可独立地调整相应的稀疏系数以获得最好的超分效果。实验结果表明,目标高分图像峰值信噪比(PSNR)相比稀疏编码超分方法平均提高了0.45 dB,同时结构相似性(SSIM)指标增加了0.011。超分图像有效地抑制了伪影,并能够较好地恢复图像边缘锐度和纹理细节,提升了超分效果。    

13.  基于稀疏表示的快速图像超分辨率算法  被引次数:2
   曹翔  陈秀宏  潘荣华《计算机工程》,2015年第6期
   针对传统基于超完备字典的图像超分辨率重建算法训练样本庞大、训练时间长、稀疏度固定,且迭代时间长的问题,提出一种快速的图像超分辨率重建算法。该算法在字典训练阶段引入快速核密度估计算法对训练样本规模进行估计,得到数量合理的训练样本,在稀疏表示阶段使用改进的广义正交匹配追踪算法,克服稀疏表示算法中固定稀疏度的缺陷。实验结果表明,相比传统字典训练算法,该算法能提高超分辨率重构的精度,且平均迭代时间较少。    

14.  增强稀疏编码的超分辨率重建(英文)  被引次数:1
   李民  程建  乐翔  罗环敏  刘小芳《光电工程》,2011年第38卷第1期
   本文提出一种基于稀疏字典编码的超分辫率方法.该方法有效地建立高、低分辫率图像高频块间的稀疏关联,并将这种关联作为先验知识来指导基于稀疏字典的超分辫率重建.较超完备字典,稀疏字典对先验知识的表达更紧凑、更高效.字典训练过程中,本文选用高频信息作为高分辫率图像的特征,更有效地建立高、低分辫率图像决间的稀疏关联,所需的训练样本更少.优化方法采用稀疏K-SVD算法以提高稀疏字典编码的计算效率.采用自然图像进行实验,与其它基于学习的超分辫率算法相比,重建图像的质圣更优.
Abstract:
A super-resolution method based on sparse dictionary is presented.The method efficiently builds sparse association between high-frequency components of HR image patches and LR image feature patches,and defines the association as a prior knowledge to guide super-resolution reconstruction based on sparse dictionary.Compared with overcomplete dictionary,sparse dictionary is more compact and effective to express the prior knowledge.We choose the high-frequency component of the HR image patch as its feature for dictionary training,which builds the sparse association between LR image patches and HR ones with better efficiency and less training examples.Sparse K-SVD algorithm is adopted as optimization method to improve the computation efficiency.Experiments with natural images show that our method outperforms several other learning-based super-resolution algorithms.    

15.  改进的稀疏表示遥感图像超分辨重建  
   朱福珍  刘越  黄鑫  白鸿一  巫红《光学精密工程》,2019年第27卷第3期
   为了进一步提高遥感图像超分辨效果、加速重建速度,针对以往稀疏超分辨算法中更容易丢失边缘信息和引入噪声的问题,本文改进了特征提取算子,以对称近邻滤波(SNN)代替高斯滤波,重点解决特征空间中的字典学习问题。首先,根据遥感图像退化模型生成训练样本图像,并分别对高、低分辨率遥感图像进行7×7分块,生成字典训练样本。然后,建立连接高、低分辨率图像空间的双参数联合稀疏字典,将字典学习过程中的稀疏系数分解为系数权值和字典原子的乘积,依据字典原子指标训练和更新字典,得到高低分辨率联合字典映射矩阵。最后,进行遥感图像超分辨稀疏重构。实验结果表明:与当前最先进的稀疏表示超分辨算法相比,本文算法得到的超分辨重建遥感图像的主观效果更好,恢复出更多的地物细节信息;客观评价参数峰值信噪比(PSNR)提高约1.7dB,结构相似性(SSIM)提高约0.016。    

16.  基于冗余字典的高光谱图像超分辨率复原算法  
   王素玉  张宗祥  王博《北京工业大学学报》,2015年第10期
   为了提高高光谱图像的空间分辨率,将基于冗余字典的信号稀疏表示理论应用到高光谱图像的超分辨率复原领域,提出一种基于冗余字典的高光谱图像超分辨率复原算法。该算法通过训练一组高低分辨率相对应的冗余字典对,使得高低分辨率相对应的像元曲线在基于各自的冗余字典进行稀疏分解时,具有相同的稀疏表示系数。超分辨率复原过程中,将待复原的低分辨率高光谱图像基于低分辨率冗余字典进行稀疏分解,利用所得的稀疏表示系数和对应的高分辨率字典,重建高分辨率的图像。实验结果表明:与基于图像块字典的超分辨率复原算法及传统的双线性插值图像放大方法相比,重建图像的峰值信噪比( peak signal to noise radio, PSNR)得到了显著提高。该算法将高光谱图像沿光谱维方向进行整体稀疏分解,避免了传统算法逐波段进行超分辨率复原带来的波段间的光谱失真问题,显著降低了算法的运算量。    

17.  基于离线双字典学习算法的图像超分辨率重建研究  
   周琳  杨娜《红外技术》,2015年第4期
   为了提高图像超分辨率重建的质量,采用离线双字典学习算法。首先图像块建立字典稀疏模型,确定字典中原子数量;然后使用基于离线字典学习对图像稀疏编码,同时把稀疏编码统一到一个框架中进行优化编码;接着对字典进行分解多个子字典,将图像块中像素点的列向量在子字典展开;最后双字典与超分辨率重构中不同分辨率的异构数据进行同构化,确定控制残差条件,给出了算法实现过程。实验仿真显示本文算法重建效果清楚,峰值信噪比最大,BIQI最小。    

18.  双正则化参数法超分辨率重建核磁共振图像  
   刘芳华  阮若林  倪浩  王建峰《核电子学与探测技术》,2016年第9期
   针对基于稀疏编码的超分辨率算法噪点、伪影较多的问题,提出一种双正则化参数核磁共振图像超分算法.该算法引入在线字典学习方法,以训练正则化参数λt分开训练生成精确的超完备字典对,并调整重建正则化参数λr,得到最佳的稀疏系数用于恢复目标高分图像.实验结果表明:改进算法比双字典学习超分法的目标图像峰值信噪比和结构相似性平均值分别提高了1.30 dB和0.023,有效地抑制了噪点和边缘伪影,较大幅度地提升了核磁共振图像的超分效果.    

19.  Adaptive Sparse Constraint Image Super-Resolution Reconstruction Method  
   GAN Zongliang    LIANG Xiuju《电视技术》,2012年第36卷第14期
   简要介绍了基于稀疏字典约束的超分辨力重建算法,提出了具有低复杂度的基于K均值聚类的自适应稀疏约束图像超分辨力重建算法.所提算法从两个方面降低其计算复杂度:分类训练字典,对图像块归类重建,降低每个图像块所用字典的大小;对图像块的特征进行分析,自适应地选择重建方法.实验结果表明,提出的快速重建方法在重建质量与原算法相当的前提下,可以较大程度地降低重建时间.    

20.  自适应稀疏约束图像超分辨力重建方法  
   干宗良《电视技术》,2012年第36卷第14期
   简要介绍了基于稀疏字典约束的超分辨力重建算法,提出了具有低复杂度的基于K均值聚类的自适应稀疏约束图像超分辨力重建算法。所提算法从两个方面降低其计算复杂度:分类训练字典,对图像块归类重建,降低每个图像块所用字典的大小;对图像块的特征进行分析,自适应地选择重建方法。实验结果表明,提出的快速重建方法在重建质量与原算法相当的前提下,可以较大程度地降低重建时间。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号