首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new concept is proposed to synthesize mesoporous magnetic nanocomposite particles of great scientific and technological importance. Mesoporous silica coatings were created on micrometer‐sized magnetite (Fe3O4) particles using cetyltrimethylammonium chloride micelles as molecular templates. The characterization by transmission electron microscopy (TEM), nitrogen adsorption–desorption, diffuse‐reflectance Fourier‐transform infrared spectroscopy, and zeta‐potential measurements confirmed the deposition of mesoporous silica thin layers on the magnetite particles. The synthesized particles showed a drastic increase in specific surface area with an average pore size of 2.5 nm. The coating material showed a negligible effect on the saturation magnetization of the original particles that were fully protected by silica coatings. The synthesized mesoporous magnetic nanocomposite particles have a wide range of applications in toxin removal, waste remediation, catalysis, reactive sorbents, and biological cell separations.  相似文献   

2.
Recently, we demonstrated the possibility of synthesizing ordered nanowires of diluted magnetic II/VI semiconductors inside the channels of mesoporous silica host structures. Here, we expand this procedure from mesoporous powders to mesoporous thin films. Diluted magnetic semiconductors Cd1–xMnxS were synthesized within the pores of mesoporous thin‐film silica host structures by a wet‐impregnation technique using an aqueous solution of the respective metal acetates, followed by drying steps and a conversion to sulfide by thermal H2S treatment. The presence of Cd1–xMnxS nanoparticles inside the pores was proved by powder X‐ray diffraction, infrared and Raman spectroscopy, and transmission electron microscopy. Photoluminescence excitation measurements clearly demonstrate the quantum size effect of the incorporated nanostructured guest species. The quality of the nanoparticles incorporated into the mesoporous films is comparable to that of those inside the mesoporous powders.  相似文献   

3.
The optoelectronic response of a material governs its suitability for a wide range of applications, from photon detection to photovoltaic conversion. To conquer the material limitations and achieve improved optoelectronic responses, nanotechnology has been employed to arrange subunits with specific size‐dependent quantum mechanical properties in a hierarchically organized structure. However, building a functional optoelectronic system from nano‐objects remains a formidable challenge. In this paper, the fabrication of a new artificially engineered optoelectronic material by the preferential growth of silicon nanocrystals on the bottom of the pore‐channels of mesoporous silica is reported. The nanocrystals form highly stable interface structures bonded on one side; these structure show strong electron–phonon coupling and a ferroelectric‐like hysteretic switching property. A new class of multifunctional materials is realized by invoking a concept that employs semiconductor nanocrystals for optical sensing and utilizes interfacial polar layers to facilitate carrier transport and emulate ferroelectric‐like switching.  相似文献   

4.
An inorganic–organic silica material (SBA–P2), prepared by immobilization of the 1,8‐naphthalimide‐based receptor P2 within the channels of the mesoporous silica material SBA‐15, is characterized by transmission electron microscopy and several spectroscopic methods. SBA–P2 features a high affinity Cu2+‐specific fluorescence response in aqueous solution with a detection limit for Cu2+ of ca. 0.65 ppb (10 × 10?9 M ) under optimized conditions. It can extract Cu2+ from the solution with only trace amounts remaining. Through isolating of the toxic ions within the mesopores of the silica, SBA–P2 has the potential to work as a toxicide for Cu2+ in living systems. The fluorogenical responses are reversible and do not vary over a broad (4.0 to 9.0) pH range suitable for application under physiological conditions. The fluorescence responses of Cu2+ in vitro (human breast cancer cells) and in vivo (five‐day‐old zebrafish) demonstrate the possibility of further application in biology.  相似文献   

5.
A novel CO2 capture phenomenon is observed by modifying as‐prepared mesoporous silica SBA‐15 (SBA(P)) with tetraethylenepentamine (TEPA), not only conserving the energy and time required for removing the template, but also opening the way to utilizing the micelle for dispersing guest species. The TEPA species dispersed within the channels of SBA(P) are highly accessible to CO2 molecules; moreover, the hydroxyl group of the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (Pluronic P123) template is able to modify the interactions between CO2 and the amine to enhance the adsorptive capacity of this system. The remarkably high adsorption capacity (173 mg g–1) of this mesoporous silica–amine composite suggests potential CO2 trapping applications, especially at low CO2 concentrations during prolonged cyclic operations.  相似文献   

6.
A sono‐ and photochemical approach has been developed to incorporate highly dispersed gold nanoclusters into mesoporous TiO2 films. The first step involves the sonication of a TiO2 film immersed in a gold chloride solution. This effectively removes the air trapped in the porous film matrix and drives the gold chloride into the pore channels, leading to a homogeneous adsorption of ionic Au in the TiO2 mesoporous matrix. The second step takes advantage of the photocatalytic property of TiO2 to reduce the adsorbed Au ions to Au0. As the gold nanoclusters thus produced are stabilized by the TiO2 mesonetwork, no organic capping molecules are required. Highly dispersed Au/TiO2 nanoheterojunction arrays can be obtained using this interesting approach.  相似文献   

7.
Magnetite nanoparticles modified covalently with triethoxysilane having a quaternary dicetyl ammonium ion are used together with tetraethylorthosilicate as building blocks to prepare a mesoporous material. Cetyltrimethylammonium bromide is used as a structure‐directing agent under conditions typically used for mesoporous MCM‐41 silicas. The resulting mesoporous material (MAG‐MCM‐41), containing up to 15 wt % of magnetite is characterized by transmission electron microscopy (TEM), isothermal gas adsorption, and X‐ray diffraction. In contrast to siliceous MCM‐41, mesoporous MAG‐MCM‐41 exhibits a remarkable hydrothermal stability. The magnetic properties of MAG‐MCM‐41 are characterized by DC and AC magnetic susceptibility, and by isothermal hysteresis cycles, confirming the long‐range magnetic ordering above 400 K. As evidenced by atomic force microscopy and TEM, the ability to respond to magnetic fields is used to orient films of MAG‐MCM‐41 with the channels perpendicular to a support.  相似文献   

8.
We report the sequential transformation of vinyl groups into hydroborate and alcohol as well as vinyl into epoxide and diol functional groups in hexagonal mesoporous vinylsilica materials, denoted meso‐vinyl‐SiO2. The first transformation proceeds quantitatively through the hydroborylated derivative. After appropriate quenching, the hydroborylated materials are stable at ambient conditions and can undergo transformation into alcohols and various other functional groups. The pore volume and pore size uniformity were found not to be greatly affected by quenching of the hydroboranes with methanol, but they were reduced by quenching with water due to the deposition of boron‐containing species in the channels. Complete conversion of hydroborylated materials to alcohol‐functionalized materials required basic conditions and treatment time of several hours. Although this led to a significant structural shrinkage, decrease in pore volume, and decrease in ordering, there was no evidence of a partial collapse or removal of substantial parts of the pore walls under optimized synthesis conditions. This is the first successful conversion of organic groups of a functionalized ordered mesoporous silica host in alkaline solution, conditions known to be detrimental for silica frameworks. Epoxidation of the vinyl groups and subsequent conversion of the resulting epoxides into diols are also briefly described. The chemical transformation through epoxidation affords ordered mesoporous silica materials functionalized with potentially chiral organic groups, which could find applications in asymmetric catalysis and chiral separations. It was found that the epoxidation was slower than hydroboration and resulted in a lower degree of conversion. These two examples of hydroboration–alcoholysis and epoxidation–ring opening reactions of terminally bonded vinyl groups in meso‐vinyl‐SiO2 demonstrate the novel concept of sequential organic chemical transformations harbored inside the ordered channels of mesoporous organosilica materials.  相似文献   

9.
In this study we report the synthesis of a new class of materials called hybrid periodic mesoporous organosilicas (HPMOs). By coupling a silsesquioxane precursor through at least two chemical linkages to the mesopore walls of a pre‐existing periodic mesoporous silica (PMS) or periodic mesoporous organosilica (PMO). Many of the problems of a conventional PMO material can be avoided while ensuring efficient use of the bridging organic functional groups of the silsesquioxane. We demonstrate this concept for PMS by anchoring various silsesquioxanes, such as ethene and ethane silsesquioxanes, to the mesopore walls of the PMS. The addition of anchored silsesquioxane monolayers and multilayers to the mesopore walls also allows for the strict control of the diameter of the mesopore as well as the mesopore wall thickness in the final HPMO material. Additionally it is shown that having the silsesquioxane located solely on the surface of the mesopores in HPMOs gives increased chemical accessibility of the organic bridge‐bonded moiety when compared with their PMO counterparts containing the bridge‐bonded organic both on the surface and within the pore walls.  相似文献   

10.
To integrate treatments of photothermal therapy, photodynamic therapy (PDT), and chemotherapy, this study reports on a multifunctional nanocomposite based on mesoporous silica‐coated gold nanorod for high‐performance oncotherapy. Gold nanorod core is used as the hyperthermal agent and mesoporous silica shell is used as the reservoir of photosensitizer (Al(III) phthalocyanine chloride tetrasulfonic acid, AlPcS4). The mesoporous silica shell is modified with β‐cyclodextrin (β‐CD) gatekeeper via redox‐cleavable Pt(IV) complex for controlled drug release. Furthermore, tumor targeting ligand (lactobionic acid, LA) and long‐circulating poly(ethylene glycol) chain are introduced via host–guest interaction. It is found that the nanocomposite can specifically target to hepatoma cells by virtue of the LA targeting moiety. Due to the abundant existence of reducing agents within tumor cells, β‐CD can be removed by reducing the Pt(IV) complex to active cisplatin drug for chemotherapy, along with the releasing of entrapped AlPcS4 for effective PDT. As confirmed by in vitro and in vivo studies, the nanocomposite exhibits an obvious near‐infrared induced thermal effect, which significantly improves the PDT and chemotherapy efficiency, resulting in a superadditive therapeutic effect. This collaborative strategy paves the way toward high‐performance nanotherapeutics with a superior antitumor efficacy and much reduced side effects.  相似文献   

11.
A thermoresponsive hydrogel, poly(N‐isopropylacrylamide) (poly(NIPAM)), is synthesized in situ within an oxidized porous Si template, and the nanocomposite material is characterized. Infiltration of the hydrogel into the interconnecting nanoscale pores of the porous SiO2 host is confirmed by scanning electron microscopy. The optical reflectivity spectrum of the nanocomposite hybrid displays Fabry–Pérot fringes characteristic of thin film interference, enabling direct, real‐time observation of the volume phase transition of the confined poly(NIPAM) hydrogel. Reversible optical reflectivity changes are observed to correlate with the temperature‐dependent volume phase transition of the hydrogel, providing a new means of studying nanoscale confinement of responsive hydrogels. The confined hydrogel displays a swelling and shrinking response to changes in temperature that is significantly faster than that of the bulk hydrogel. The porosity and pore size of the SiO2 template, which are precisely controlled by the electrochemical synthesis parameters, strongly influence the extent and rate of changes in the reflectivity spectrum of the nanocomposite. The observed optical response is ascribed to changes in both the mechanical and the dielectric properties of the nanocomposite.  相似文献   

12.
This paper describes an effective method for forming silicon oxide on silica‐on‐silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica‐on‐silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma‐enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.  相似文献   

13.
In this article, a simple and mild preparation of secondary pores are reported, for the first time, with uniform and tunable sizes (in a wide range of 0.9–4.8 nm) in the walls highly connecting the primary mesochannels in 3D mesopore networks. The uniform secondary pores are obtained by using ordered 2D hexagonal mesoporous anatase TiO2–SiO2 nanocomposites as precursors, NaOH as an etchant via an “extracting SiO2” approach. The strategy here adopts diluted NaOH solution, appropriate extraction temperature, and solid/liquid ratio. The photocatalytic degradation rates of Rhodamine B (0.347 min–1), Acid Red 1 (0.0487 min–1), microcystin–LR (1.66 min–1) on the representative resultant nanocomposite are very high, which are 4.63, 11.7, 1.84 times that of the precursor without secondary mesopores; even up to 18.9, 8.21, 4.66 times that of P25, respectively. These results clearly demonstrate that the secondary mesopores play an overwhelming role to the increments of activities. The mesoporous anatase–silica nanocomposites with secondary mesopores present unprecedented‐high degradation activities to various organic pollutants in the mesoporous metal‐oxides‐based materials reported up to now and are considerably stable and reusable. It is believed that the fundamentals in this study will provide new insights for rational design and preparation of 3D highly interconnected mesoporous metal‐oxides‐based materials with super‐high performances.  相似文献   

14.
The assembly of multifunctional nanocomposite materials is demonstrated by exploiting the molecular sieving property of SBA‐16 nanoporous silica and using it as a template material. The cages of the pore networks are used to host iron oxide magnetic nanoparticles, leaving a pore volume of 0.29 cm3 g?1 accessible for drug storage. This iron oxide–silica nanocomposite is then functionalized with amine groups. Finally the outside of the particle is decorated with antibodies. Since the size of many protein molecules, including that of antibodies, is too large to enter the pore system of SBA‐16, the amine groups inside the pores are preserved for drug binding. This is proven using a fluorescent protein, fluorescein‐isothiocyanate‐labeled bovine serum albumin (FITC‐BSA), with the unreacted amine groups inside the pores dyed with rhodamine B isothiocyanate (RITC). The resulting nanocomposite material offers a dual‐targeting drug delivery mechanism, i.e., magnetic and antibody‐targeting, while the functionalization approach is extendable to other applications, e.g., fluorescence–magnetic dual‐imaging diagnosis.  相似文献   

15.
Highly ordered mesoporous silicon carbide ceramics have been successfully synthesized with yields higher than 75 % via a one‐step nanocasting process using commercial polycarbosilane (PCS) as a precursor and mesoporous silica as hard templates. Mesoporous SiC nanowires in two‐dimensional (2D) hexagonal arrays (p6m) can be easily replicated from a mesoporous silica SBA‐15 template. Small‐angle X‐ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images show that the SiC nanowires have long‐range regularity over large areas because of the interwire pillar connections. A three‐dimensional (3D) bicontinuous cubic mesoporous SiC structure (Ia3d) can be fabricated using mesoporous silica KIT‐6 as the mother template. The structure shows higher thermal stability than the 2D hexagonal mesoporous SiC, mostly because of the 3D network connections. The major constituent of the products is SiC, with 12 % excess carbon and 14 % oxygen measured by elemental analysis. The obtained mesoporous SiC ceramics are amorphous below 1200 °C and are mainly composed of randomly oriented β‐SiC crystallites after treatment at 1400 °C. N2‐sorption isotherms reveal that these ordered mesoporous SiC ceramics have high Brunauer–Emmett–Teller (BET) specific surface areas (up to 720 m2 g–1), large pore volumes (~ 0.8 cm3 g–1), and narrow pore‐size distributions (mean values of 2.0–3.7 nm), even upon calcination at temperatures as high as 1400 °C. The rough surface and high order of the nanowire arrays result from the strong interconnections of the SiC products and are the main reasons for such high surface areas. XRD, N2‐sorption, and TEM measurements show that the mesoporous SiC ceramics have ultrahigh stability even after re‐treatment at 1400 °C under a N2 atmosphere. Compared with 2D hexagonal SiC nanowire arrays, 3D cubic mesoporous SiC shows superior thermal stability, as well as higher surface areas (590 m2 g–1) and larger pore volumes (~ 0.71 cm3 g–1).  相似文献   

16.
In this paper, we report on how the properties of the suspensions of a lyotropic nematic mineral liquid crystal (MLC) based on V2O5 ribbons are exploited to synthesize single‐domain mesostructured inorganic–inorganic composites, aligned at the centimeter length scale by application of a relatively small magnetic field (0.85 T). In addition, the removal of the mineral template from the inorganic matrix leaves aligned empty channels, fingerprints of the V2O5 ribbons. Large colorless and birefringent mesoporous material is obtained where the orientational order of the channel director has retain the magnetic‐field alignment of its mineral template up to the centimeter length scale within the porous macroscopic silica matrix. A representative material exhibits slit‐like pores with cross‐sectional dimensions of 2 × 20 nm over 600 nm, and has a specific surface area of 207 m2 g–1.  相似文献   

17.
Controlling structure and function to switch ionic transport through synthetic membranes is a major challenge in the fabrication of functional nanodevices. Here we describe the combination of mesoporous silica thin films as structural unit, functionalized with two different redox‐responsive ferrocene‐containing polymers, polyvinylferrocene (PVFc) and poly(2‐(methacryloyloxy)ethyl ferrocenecarboxylate) (PFcMA), by using either a grafting to, or a grafting from approach. Both mesoporous film functionalization strategies are investigated in terms of polymer effect on ionic permselectivity. A significantly different ionic permselective behavior can be observed. This is attributed to different polymer location within the mesoporous film, depending on the functionalization strategies used. Additionally, the influence of chemical oxidation on the ionic permselective behavior is studied by cyclic voltammetry showing a redox‐controlled membrane gating as function of polymer location and the pH value. This study is a first step of combining redox‐responsive ferrocene‐containing polymers and mesoporous membranes, and thus towards redox‐controlled ionic transport through nanopores.  相似文献   

18.
It is found for the first time that silicon nanoclusters are formed in the surface layer of thermal silicon dioxide under high-temperature annealing (T = 1150°C) in dried nitrogen. Analysis of the cathodoluminescence spectra shows that an imperfect surface layer appears upon such annealing of silicon dioxide, with silicon nanoclusters formed in this layer upon prolonged annealing. Transmission electron microscopy demonstrated that the silicon clusters are 3–5.5 nm in size and lie at a depth of about 10 nm from the surface. Silicon from the thermal film of silicon dioxide serves as the material from which the silicon nanoclusters are formed. This method of silicon-nanocluster formation is suggested for the first time.  相似文献   

19.
A simple synthesis route to mesoporous carbons that contain heteroaromatic functionality is described. The sulfur‐functionalized mesoporous carbon (S‐FMC) materials that have been prepared show excellent thermal stability, as well as excellent hydrothermal stability, and stability over a wide range of pH values. These materials also show excellent mercury sorption performance over a broad range of pH, much broader than is possible with thiol‐based functionality or most silica‐based sorbents. The superior performance of these mesoporous heterocarbons as heavy‐metal sorbent material is demonstrated. These materials are shown to be stable at elevated temperatures and extreme pHs, making them ideally suited as a new class of absorbent material.  相似文献   

20.
Two novel porous nitrosamine traps have been synthesized in order to eliminate carcinogens from the environment. A functional mesoporous material, CuO/SBA‐15, has been synthesized by using an in‐situ coating method, with the addition of a guest salt to the reaction system to modify the porous materials before the particles of SBA‐15 were incubated; the synthesis and modification processes were performed in a single step. The resulting mesoporous composites selectively adsorb N‐nitrosopyrrolidine (NPYR), a typical volatile nitrosamine, and are potential cigarette additives that can be used for the removal of nitrosamines from cigarette smoke, thereby protecting public health and the environment. In another reaction, silica gel is modified by being coated with magnesia and then corroded by NaOH solution.The magnesia is dispersed onto the silica by impregnating it with a magnesium acetate solution, followed by calcination. After corrosion of the calcined sample with caustic soda, only the silica particles that are completely covered by magnesia remain. This material exhibits a similar ability to SBA‐15 and zeolite NaY in its selective adsorption of NPYR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号