首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
以甘肃地区镜铁矿粉矿为原料, 采用磁化焙烧-弱磁选工艺, 研究了焙烧温度、焙烧时间、还原剂用量、磨矿细度、磁场强度等对磁选效果的影响。结果表明, 在煤粉用量2%、焙烧温度800 ℃、焙烧时间60 min条件下焙烧, 再在磨矿细度-0.074 mm粒级占85.36%、磁场强度92.16 kA/m条件下磁选, 可得到品位为54.95%、回收率为88.92%的弱磁选精矿。  相似文献   

2.
某复杂难选红铁矿磁化焙烧-磁选工艺及机理研究   总被引:3,自引:2,他引:1  
对某复杂难选红铁矿进行了磁化焙烧-磁选工艺研究。试验结果表明, 在焙烧温度为950 ℃, 焙烧时间为15 min, 碳粉(0~1 mm)用量为15%, 磁场强度为0.16 T, 磨矿粒度-0.074 mm粒级占87%左右的条件下, 可获得Fe含量为63.06%、回收率为88.45%的铁精矿。磁化焙烧-磁选机理研究表明, 红铁矿经磁化焙烧后的产品呈疏松多孔结构, 有利于磨矿作业; 红铁矿在950 ℃下磁化焙烧15 min, 焙烧产品的物相仅为Fe3O4。  相似文献   

3.
酒钢选烧厂竖炉给矿铁品位为33.84%,有用铁矿物主要为镜铁矿、褐铁矿、菱铁矿,脉石矿物主要为石英,有害元素P含量较低。针对酒钢镜铁矿采用常规选矿方法选别指标差的问题,采用磁化焙烧-磨矿-弱磁选流程法对有代表性试样进行选别试验研究。结果表明:在焙烧温度650 ℃、焙烧时间5 min、CO浓度30%、总气体流量500 mL/min条件下进行磁化焙烧,焙烧产品磨细至-0.074 mm占82%,在磁场强度为119.4 kA/m条件下经过弱磁选,精矿铁品位可以达到59.12%、铁回收率为81.31%,精矿中主要有害杂质Al2O3和P含量都较低,达到冶炼原料的要求。研究结果为酒钢镜铁矿的开发利用提供了依据,并对同类型矿石的开发利用具有指导意义。  相似文献   

4.
以碳作为还原剂,对某镜铁矿0~15 mm粒级粉矿进行了回转窑磁化焙烧-磁选试验研究。结果表明,还原剂与镜铁矿配比为2.5%,在焙烧温度820 ℃、焙烧时间30 min条件下经回转窑磁化焙烧,焙烧矿磨至-0.048 mm粒级占80%,在磁场强度120 kA/m条件下弱磁选获得铁精矿,其中给矿粒级0~0.5 mm所得弱磁选精矿平均全铁品位57.27%、平均铁回收率83.24%; 0.5~1.0 mm粒级所得弱磁选精矿平均全铁品位57.55%、平均铁回收率82.92%; 给矿粒级1~5 mm所得弱磁选精矿平均全铁品位57.58%、平均铁回收率89.31%,给矿粒级5~15 mm所得弱磁选精矿全铁品位58.36%、铁回收率84.40%; 全粒级弱磁选精矿平均全铁品位57.70%、平均回收率84.97%。  相似文献   

5.
回转窑磁化焙烧是目前处理镜铁山镜铁矿石的有效方法,但是0~1 mm粒级镜铁矿不能直接进入回转窑磁化焙烧,磨矿造球工艺又过于复杂。为开发利用0~1 mm粒级镜铁矿资源,采用制粒-磁化焙烧-弱磁选工艺进行试验。结果表明:在外配兰炭用量为2.5%、膨润土用量为1%、水用量为8%时配制成粒度为3~5 mm的小球,小球经100 ℃烘干后,在焙烧温度为750 ℃、焙烧时间为60 min条件下磁化焙烧,焙烧产品磨细至-0.045 mm占80%,经磁场强度为80 kA/m弱磁选,获得了全铁品位为52.85%、回收率为86.33%的精矿指标,为0~1 mm粒级粉矿的利用提供了一种新思路。  相似文献   

6.
某氰化尾渣煤基还原焙烧-磁选试验   总被引:2,自引:1,他引:1  
在对某氰化尾渣进行化学分析和X射线衍射分析的基础上,进行了煤基还原焙烧-磁选试验研究,着重探讨了还原煤的种类和添加量、焙烧温度、焙烧时间对试验结果的影响。试验结果表明,用烟煤为还原剂,不仅用量比褐煤少,而且试验指标更好;在烟煤添加量为18%、焙烧温度为750 ℃、焙烧时间为60 min、焙烧产品磨矿细度为-0.074 mm占90%的情况下,经1粗1精弱磁选(磁场强度为149.6 kA/m),获得了铁品位为60%、回收率为70.80%的铁精矿。  相似文献   

7.
新疆某菱铁矿磁化焙烧-磁选试验   总被引:1,自引:0,他引:1  
朱德庆  何威  潘建  薛子兴 《金属矿山》2012,41(5):79-81,103
以新疆某地菱铁矿为原料,详细研究了焙烧温度、焙烧时间、还原剂用量、菱铁矿粒度、焙烧产物磨矿细度和弱磁选磁场强度等因素对磁选效果的影响。结果表明:16~10 mm的菱铁矿在不加还原煤、焙烧温度为800 ℃、焙烧时间为15 min条件下的焙烧产物磨至-0.074 mm占90%,经1次弱磁选(151.20 kA/m),可获得铁品位为63.55%、回收率为95.76%的铁精矿。  相似文献   

8.
介绍了我国复杂难选铁矿的特点,以及流态化磁化焙烧的特点和研究现状,指出了流态化磁化焙烧存在的问题及发展趋势.  相似文献   

9.
苏涛  陈铁军  汪博 《金属矿山》2015,44(2):173-176
甘肃某镜铁矿尾矿中尚含有22.39%的铁,且铁主要以镜铁矿形式存在,其次以菱铁矿形式存在。为了给该尾矿的综合利用提供技术支持,以甘肃某焦化厂生产的半焦化煤粉作为还原剂,对该尾矿进行了磁化焙烧—弱磁选工艺研究。结果表明:在煤粉与原尾矿的质量比为1.5%、温度为750℃的条件下磁化焙烧60 min,可使原尾矿中绝大部分的镜铁矿和菱铁矿转化为磁铁矿;焙烧矿磨至-0.074 mm占87.36%后经1次弱磁粗选和1次弱磁扫选—粗、扫选所得粗精矿按0.045 mm筛分—筛下物1次弱磁精选—精选精矿与筛上物合并,可以获得铁品位为54.57%、铁回收率为78.97%的最终铁精矿。  相似文献   

10.
以湖南某地隐晶质胶状结构为主的低硫磷褐铁矿样为对象,进行了磁化焙烧及磨选工艺技术条件研究。试验确定的适宜工艺技术条件为:造球用矿样粒度为-0.074 mm占35%、还原煤添加量为矿样质量的10%,适宜的焙烧温度为800 ℃、焙烧时间为80 min,焙烧产物碎磨细度为-0.045 mm占80%、弱磁选磁场强度为90 kA/m,经1粗1精弱磁选,最终可获得铁品位为58.83%、铁回收率为81.19%的弱磁选精矿。  相似文献   

11.
The utilization of abundant low grade goethite (α  FeOOH) ores is potentially important to many countries in the world, especially Australia. These ores contain many detrimental impurities and are difficult to upgrade to make suitable concentrates for the blast furnace. In this paper, chemical and mineral transformations of a goethite ore were studied by dehydroxylation, reduction roasting in CO and CO2 gas mixtures, and magnetic separation. The goethite sample was taken from a reject stream at an iron ore mine from the Pilbara region, Western Australia. The roasting temperature range investigated was 400–700 °C. Chemical and mineralogical analysis was conducted using XRF, XRD, optical microscope, EPMA, and SEM. Magnetic separation was conducted using a Davis tube tester and a high intensity magnetic separator.The results show that reduction roasting can remove moisture and impurities but does not significantly change the Fe content in the feed. However, reduction roasting transforms goethite to hematite and eventually maghemite which can be recovered by magnetic separation, allowing upgrading. Further studies are needed to optimize the reduction roasting and correlate it with the magnetic separation to maximize the efficiency of iron upgrading.  相似文献   

12.
以焦煤为还原剂,采用还原焙烧-磁选的工艺方法对河南某黄金冶炼厂产出的冶炼渣进行铁的回收利用研究。该冶炼渣TFe品位35.91%,成分复杂,渣粒度极细,-0.025mm含量占73.71%,试验考察了还原焙烧温度、时间、还原剂加入量以及磨矿细度、磁场强度对选别指标的影响。确定最佳工艺条件为:焙烧温度1150℃,还原剂加入量13%,焙烧时间60min,焙烧样磨矿至-0.045mm占74.55%、60kA/m磁场强度下进行磁选,最终可获得铁精矿TFe品位93.21%、铁回收率82.72%的良好指标。  相似文献   

13.
目前品位高且易选的铁矿石资源濒临枯竭,合理开发利用复杂难选铁矿石资源对缓解我国铁矿石供求矛盾,促进钢铁工业健康发展具有很重要的现实意义。近些年来,针对氧化铁矿物开发的新型高效磁化焙烧方式逐渐引起人们的关注,与传统回转窑及竖炉焙烧方式相比,新型磁化焙烧方式在提高氧化铁矿的选别指标和经济、环保方面有较大优势。本文重点阐述了常规磁化焙烧方式现状,新型磁化焙烧方式的原理及优越性,并对氧化铁矿物磁化焙烧研究前景进行了展望。第一作者简介:许道刚(1988年11月),男,江西省吉安市吉安县,内蒙古科技大学在读研究生。电话:15764939052邮箱:872632168@qq.com  相似文献   

14.
针对西北某铁矿矿物组成、嵌布关系复杂及嵌布粒度较细的特点,进行了选矿试验研究。试验结果表明:原矿在焙烧温度700℃、焙烧时间50 min条件下,进行中性焙烧后,再经磨矿-弱磁选-弱磁选尾矿强磁选流程处理后,可获得铁品位为66.85%、回收率为45.67%的弱磁选精矿和铁品位为62.80%、回收率为38.98%的强磁选精矿,综合精矿铁品位为64.92%、回收率为84.65%。  相似文献   

15.
我国磁选设备及铁矿石预选技术   总被引:1,自引:0,他引:1  
介绍了目前我国磁选设备的研制及应用现状,并就干式弱磁选、强磁选和重选等工艺用于我国铁矿石预选的技术经济状况及推广应用价值进行了论述。  相似文献   

16.
这是一篇冶金工程领域的论文。针对高磷铁矿石气基还原存在球强度低以及还原温度高的问题,提出了氧化焙烧-气基还原-磁选新工艺。考查了氧化温度以及脱磷剂种类对氧化球抗压强度的影响,并找出了符合竖炉强度要求的氧化焙烧条件,在此基础上,研究了还原温度、还原气体总流量、还原气体组成以及还原时间对提铁降磷的影响。结果表明,在Na2CO3用量10%,氧化温度1200 ℃,氧化时间60 min,还原温度950 ℃,H2与CO的流量分别为3.75 L/min以及1.25 L/min,还原时间180 min的条件下,可获得铁品位91.15%、铁回收率93.07%和磷含量0.14%的粉末还原铁。扫描电镜结果表明,粉末还原铁中的磷以机械夹杂的形式存在,磷是通过磨矿-磁选除去。  相似文献   

17.
研究了从低品位难选铀钼矿石中浸出铀钼的工艺,考察了焙烧温度、添加剂种类及用量、焙烧时间、矿石粒度等对矿石焙烧效果的影响。试验结果表明,最佳的钙化焙烧工艺条件为:矿石粒度-100目、焙烧温度750℃、碳酸钙用量为4%(与矿石质量比)、焙烧时间2h。在此工艺条件下,焙砂用硫酸浸出,铀和钼浸出率分别达到62.5%和79.2%。  相似文献   

18.
某褐铁矿原矿铁品位39.28%,其中褐铁矿矿物含量占73.86%,具有一定的回收价值。以焦煤为还原剂,采用磁化焙烧-磁选的工艺回收其中的铁,试验主要考察了磁化焙烧温度、时间、还原剂加入量、磨矿细度、磁场强度对铁精矿选别指标的影响。确定最佳工艺条件为:磁化焙烧温度800℃,焦煤加入量4%,焙烧时间40 min,焙烧样磨矿至-0.037 mm 90%,磁场强度设置192 KA/m进行磁选,最终可获得磁选精矿铁品位59.76%、铁回收率73.31%的良好指标。  相似文献   

19.
Ferritungstite ores have great commercial value because of the huge reserve and high content of W, Mo and Fe. But their economic recovery has long been a challenge due to its complex mineralogy and heterogeneous. The current study investigated how reductive roasting of ferritungstite ores with mixed sodium salts affected the phase evolution of W, Mo and Fe through Micro-area XRD and Powder XRD, with the goal of comprehensive transformation of ferritungstite. Reductive roasting with mixed sodium salts at 800 °C transformed ferritungstite to Na2WO4 and magnetite (Fe3O4), which were easily recovered by water leaching and magnetic separation. Furthermore, a lot of pores and gaps rather than sintering or agglomeration was observed in the ore particles after roasting by SEM-EDS, which was beneficial for the water leaching of W and Mo. As a result, 96.40% of W and 96.64% of Mo were extracted after water leaching, while an iron concentrate with an Fe content of 55.65% and recovery of 83.30% was obtained after magnetic separation. These results suggested such process would be applicable to the comprehensive recovery of valuable metals from ferritungstite ores, as well as similar tungsten ores and scraps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号