首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
攀钢高炉瓦斯泥的综合利用   总被引:1,自引:3,他引:1  
高炉瓦斯泥中含有大量的铁,如能回收则是很好的炼铁原料。本文针对攀钢高炉瓦斯泥含铁率较低、含锌率较高的特点进行了磁选、重选、浮选探索试验,最终确定采用重—浮联合的最佳工艺流程,获得铁品位47.20%、回收率49.24%的铁精矿,并使锌集中到尾矿中,以利于锌的回收。  相似文献   

2.
高炉瓦斯泥是一种资源,在对其原矿性质和物相组成等进行分析的基础上,研究了铁、碳综合回收的几种不同工艺,结果表明,与磁选-浮选、磁选-重选-浮选、重选-浮选三个工艺相比,浮选-重选、单一浮选的铁、碳回收率和品位比较高,其中浮选-重选流程的铁回收率和碳品位最高,分别达到69.54%和66.76%,单一浮选的铁品位和碳回收率最好,分别为56.19%和64.93%。由于瓦斯泥原矿的性质对其工艺影响很大,因此本文研究内容仅对类似瓦斯泥性质进行提铁、碳综合回收具有一定的参考价值。  相似文献   

3.
张晋霞  邹玄  牛福生 《金属矿山》2016,45(8):194-196
河北某瓦斯泥锌含量为8.74%、铁品位为27.4%,含锌矿物主要为红锌矿,含铁矿物主要为赤铁矿。为回收瓦斯泥中锌等有价元素,对其进行了硫酸浸出试验。结果表明,常温下,硫酸浓度为0.5 mol/L、液固比为6 mL/g、反应时间为15 min、搅拌速度为300 r/min条件下,可以获得锌浸出率为95.21%的指标,浸渣中锌品位降至0.5%。试验结果可以为该类瓦斯泥矿硫酸溶解浸出提供技术依据。  相似文献   

4.
在对瓦斯泥进行样品性质研究的基础上,采用浮选—磁选—重选的原则流程,回收碳、铁、锌三种有用元素。试验结果表明,当柴油用量为500 g/t,2#油用量为25 g/t,六偏磷酸钠用量为100 g/t,矿浆浓度为10%,采用一粗两精一扫工艺,可获得固定碳含量66.12%、回收率66.19%的碳精矿产品。对碳尾矿进行弱磁选—强磁选工艺,可得到铁品位为53.97%、回收率94.86%的铁精矿。对铁尾矿进行重选试验,使用悬振锥面选矿机最终使锌富集至18.99%,回收率为77.03%。该试验流程为类似瓦斯泥的回收利用提供了基础数据。  相似文献   

5.
高炉瓦斯泥中含有碳、铁等有用元素,文中采用悬振锥面选矿机对瓦斯泥浮选提碳后尾矿中的铁进行高效回收,对悬振锥面选矿机的几个影响因素进行了试验研究,结果表明:在盘面回转振动频率为315次/min,盘面回转振动周期为150s/r,给矿浓度为15%,冲洗水量为0.25t/h,给矿速度为0.5L/s的条件下对瓦斯泥浮选尾矿进行选别,能够得到品位为60.75%,回收率为82.12%的铁精矿。同时与利用摇床回收铁的试验进行了对比,认为悬振锥面选矿机比摇床更适合对高炉瓦斯泥中的铁进行选别。  相似文献   

6.
云锡某锡尾矿锡铁综合回收选矿工艺研究   总被引:3,自引:1,他引:2  
针对锡尾矿锡铁致密共生的特性,以锡尾矿中含的磁性矿物为载体,在强磁场中将锡铁结合体回收并与含钙、镁、硅等的脉石矿物同步分离,经磨矿使锡铁结合体解离,采用磁选回收铁矿物、重选回收锡石的选矿工艺流程,获得铁精矿和锡精矿产品。流程试验试料含锡0.18%、含铁9.74%,获得锡精矿产率1.16%、锡品位4.38%、锡回收率28.23%,铁精矿产率7.04%、铁品位52.62%、铁回收率38.04%的试验指标。  相似文献   

7.
钢铁企业排放的含铁尘泥是重要的二次资源.为了从中回收铁,本文对两种含铁尘泥瓦斯灰和转炉红尘进行了"混合磁化焙烧-弱磁选"试验研究.确定了最优的工艺条件为:焙烧温度750℃、焙烧时间60min、激磁电流1.0A、磨矿细度-200目占90%.在此条件下,获得了铁品位60.4%和回收率88.6%的铁精矿.  相似文献   

8.
张晋霞  邹玄  张晓亮  牛福生 《中国矿业》2015,24(4):96-99,104
在对高炉瓦斯泥性质、矿物成分分析的基础上,采用选冶联合技术对其有价元素进行了提取研究。试验研究表明,瓦斯泥原料经摇床分选后,获得了铁品位为53.25%,回收率为51.05%的铁精矿;摇床尾矿经浮选柱一次粗选两次精选工艺流程,得到碳品位为74.21%、作业回收率为66.39%的碳精矿;最终尾矿采用硫酸进行浸锌试验,锌的浸出率可达97.85%,向浸出液中加入硫化钠用量为200kg/t时,Zn回收率达到86.36%。  相似文献   

9.
用选矿方法从高炉瓦斯泥中回收铁精矿的研究   总被引:2,自引:0,他引:2  
宣守蓉  于留春 《金属矿山》2007,37(11):123-127
介绍了梅山高炉瓦斯泥的性质、试验情况及结果,国内外处理使用含锌高炉瓦斯泥的方法。根据其性质,用选矿方法对高炉瓦斯泥进行了收铁降锌的试验研究。结果表明,无论用弱磁选还是强磁选均能从中回收大部分铁矿物并去除大部分锌,将高锌、低锌物料进行有效分离,铁精矿产率和品位均达到52.00%以上,铁金属回收率70.00%,脱锌率50.00%以上,使除锌后的瓦斯泥可继续作炼铁原料使用。  相似文献   

10.
云南大红山铁尾矿再选新工艺研究   总被引:2,自引:0,他引:2  
朱运凡  杨波  卢琳 《矿冶》2012,21(1):35-38
云南大红山铁尾矿,矿物粒度细、铁品位低,铁矿物主要为赤铁矿。采用传统的选矿工艺难以得到有效回收。本试验采用强磁预选抛尾和悬振锥面选矿机精选的磁选—重选联合工艺,有效地回收尾矿中的铁矿物,最终尾矿铁品位降至10.45%,产出的铁精矿品位达到54.02%,回收率为34.68%。  相似文献   

11.
赤铁矿选矿工艺研究   总被引:3,自引:3,他引:0  
王亚彬  周平  裴斌 《矿冶》2012,21(3):28-29
云南某铁矿铁平均品位为38.1%,主要以赤铁矿和褐铁矿形式存在,有害元素硫、砷的含量极低,砷含量为0.002%,硫含量为0.01%,对矿石的利用不造成影响。矿石中磷含量高,磷平均含量为0.44%对矿石的影响较大。采用强磁选和重选方法对矿石进行了研究,探索一个合理可行的流程,在提高铁的品位和回收率的基础上降低磷和硅的含量。  相似文献   

12.
武丹宇  庄故章  冯艳虎 《矿冶》2023,32(1):38-43
对老挝某褐铁矿抛尾矿进行了磁化焙烧—重选—磁选试验。在工艺矿物学研究的基础上,对该矿进行了焙烧、磁选、重选分选试验,并进行了多流程对比试验,研究出了适合该矿的选矿工艺流程,采用还原焙烧—摇床—弱磁选,取得了精矿产率42.95%、铁精矿品位62.10%、回收率45.73%的指标;采用中选焙烧—摇床—弱磁选,取得了精矿产率28.41%、铁精矿品位59.70%、回收率29.28%的指标。  相似文献   

13.
昆钢大红山铁矿二选厂采用振动螺旋溜槽+摇床重选工艺代替浮选工艺,对铁品位49.43%,S iO2含量16.71%的强磁选精矿进行选别,精矿铁品位提高到58.71%,S iO2含量降到12.32%,铁回收率85.21%,达到了降低S iO2技改含量,提高铁精矿品位,节约成本的目的。  相似文献   

14.
对新疆某铁矿石进行了选矿试验方案对比研究。铁硫混选再分离流程、先选铁后选硫流程和先浮硫后选铁流程对比试验结果表明, 为确保铁精矿的质量和总铁回收率, 选择铁硫混选再分离流程, 即采用重选-磁选-重选-浮选闭路流程, 可获得含TFe 66.10%、S 0.28%、铁回收率79.45%的铁精矿和含S 46.14%、硫回收率67.01%的硫精矿。  相似文献   

15.
某低品位微细粒铬铁矿Cr_2O_3品位较低,为6.82%,且泥化现象严重。采用"重选前分级—两段螺旋溜槽—粗细分级—两段摇床"工艺流程处理此铬铁矿,最终可以获得Cr_2O_3品位49.20%,回收率54.39%的精矿。最终尾矿中TFe品位为43.11%,回收率为94.74%。对最终尾矿中的铁进行回收,经过两段强磁选试验,所得精矿TFe品位为45.25%,回收率为27.51%,微细粒级的泥化现象导致了选别效果不理想,有待在后续试验中进一步考察研究。  相似文献   

16.
新疆某褐铁矿的选矿工艺研究   总被引:7,自引:8,他引:7  
李永聪  孙福印 《金属矿山》2002,(6):29-30,41
新疆某铁矿主要含褐铁矿,脉石为含铁硅酸盐矿物,采用浮选、重选、磁选和焙烧磁选等选矿方法进行了试验研究,试验研究表明,在原矿品位46.5%的情况下,焙烧磁选工艺可获得铁精矿品位59.2%、回收率92.9%的技术指标,从经济方面考虑,建议采用弱磁选-强磁选-正浮选工艺或分极-重选-细粒级浮选工艺联合流程比较适宜。  相似文献   

17.
矾山磷矿尾矿回收铁试验研究   总被引:2,自引:0,他引:2  
介绍了矾山磷矿磁选尾矿的矿物组成、铁的赋存状态、矿物嵌布特征以及用重选、重磁联合流程、磁选分别对其进行回收铁的试验研究情况。用磁选法粗选并进行粗精矿再磨再选,可获得含铁64.19%、回收率5.63%的铁精矿。  相似文献   

18.
华阳川铀多金属矿中有价金属品位均较低,通过选矿大幅度提高铀品位并综合回收伴生金属,方可使该矿床具备开发价值。针对矿石中伴生的铅和铁,开展了综合回收研究,先通过重选将各有价金属预富集在重选精矿中,然后采用铅硫混合浮选-铅硫分离的浮选工艺回收铅,通过添加铀矿物抑制剂、强磁脱铀等方式降低铅精矿中铀含量,最后采用弱磁选从选铅尾矿中回收铁,通过多次精选提高铁品位,降低铀含量。铅精矿中铅品位67.19%,铀品位0.004%;铁精中铁品位66.5%,铀品位0.004%,经检测铅精矿、铁精矿和重选尾矿中的放射性均达标,铅精矿和铁精矿可以直接出售,重选尾矿可以按照普通尾矿处置。  相似文献   

19.
陈建福  陈发上  张莉  陈宇  涂友兵 《现代矿业》2018,34(11):106-109
针对铅火法冶炼渣中成分复杂、多金属难回收等问题,分别开展了重选、浮选、磁选、磁选-重选试验研究工作,对比分析了其综合回收工艺指标。试验结果表明:单一重选、浮选、磁选工艺均不能得到较好的指标,而重选-磁选联合工艺可得到较为合理的产品指标,获得的铁精矿品位为55.47%,铅精矿品位为46.13%,实现了铅废渣的多金属回收利用。  相似文献   

20.
印尼某海滨砂矿合理选矿工艺流程的研究   总被引:2,自引:0,他引:2  
对印度尼西亚某海滨砂矿进行了详细的工艺矿物学及选矿工艺流程研究。由于矿石经历风化淋滤, 各种矿物磁性范围重叠, 矿样属难选矿石。采用分级-重选-磁选-焙烧联合流程进行多次选别, 使铁、钛矿物得到了较好的分离, 在原矿含TiO2和Fe分别为6.38%和21.91%时, 获得了铁精矿含Fe 56.27%、Fe回收率为63.95%, 钛铁矿精矿含TiO2 46.91%、TiO2回收率为22.42%的技术指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号