首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以某公司复杂含铟烟尘为原料,分别研究了氧化酸浸和硫酸化焙烧-水浸两种浸出铟工艺。氧化酸浸工艺主要考察了初始硫酸酸度、液固比、浸出温度、反应时间、氧化剂添加量等因素对铟浸出效果的影响;硫酸化焙烧-水浸工艺主要考察了硫酸用量、焙烧温度、焙烧时间等因素对铟浸出效果的影响。实验结果表明,在初始硫酸浓度6.0 mol/L,液固比6∶1,浸出温度90℃,浸出时间3 h,氧化剂H2O2添加量为12%条件下进行氧化酸浸,铟浸出率由常规酸浸的46.5%提高到70%;在硫酸用量1.0 m L/g,焙烧温度300℃,焙烧时间2 h条件下进行硫酸化焙烧-水浸,铟浸出率达到92%,实现了铟的高效浸出。  相似文献   

2.
含富铟铁酸锌锌浸渣中铟的微波强化酸浸   总被引:1,自引:0,他引:1  
常规酸浸很难高效浸出富铟铁酸锌中的铟,为了探索提高铟浸出率的低耗、高效工艺,以广西柳州锌品厂含富铟铁酸锌的锌浸渣为对象,进行了微波助浸工艺及工艺参数研究。结果表明:微波直接酸浸工艺具有简单、高效的特点,其铟浸出率明显高于常规酸浸和微波预处理+常规酸浸工艺,与微波预处理+微波酸浸工艺的铟浸出率十分接近;搅拌速度、硫酸初始浓度、液固比、浸出温度、浸出时间对铟浸出率均有显著影响;在搅拌速度为550 r/min、硫酸初始浓度为1.5 mol/L、液固比为10 mL/g、浸出温度为75℃、浸出时间为90 min情况下,对锌浸渣进行微波直接酸浸铟,铟浸出率可达77.0%,较常规酸浸铟浸出率高19.9个百分点。  相似文献   

3.
两段酸浸法浸出铜烟尘中的铜锌铟   总被引:1,自引:0,他引:1  
李学鹏  王娟  常军  王子阳 《矿冶工程》2020,40(1):109-113
以某铜烟尘为处理对象,采用常压酸浸回收铜锌、氧压酸浸回收铟的两段酸浸法浸出其中的铜、锌、铟。常压酸浸法浸出铜烟尘中锌和铜的最佳条件为:浸出温度95 ℃,硫酸浓度180 g/L,搅拌速率350 r/min,液固比4∶1,浸出时间120 min,此时铜、锌、铟浸出率分别为84.25%、95.35%和9.98%。采用氧压酸浸法浸出铜烟尘中的铟,最佳条件为:浸出温度220 ℃,搅拌速率650 r/min,釜内氧分压0.60 MPa,液固比4∶1,硫酸浓度180 g/L,浸出时间150 min,此时铜、锌、铟浸出率分别为93.12%、97.89%和99.50%。  相似文献   

4.
朱北平  邓志敢  张帆  魏昶 《矿冶》2016,25(3):45-49
以富含铟的湿法炼锌中性浸出渣为研究对象,研究了热酸浸出过程中锌、铟等有价金属的溶解行为。结果表明,随着锌浸渣的溶解,浸出液中Fe3+浓度及氧化还原电位不断升高,抑制了铁酸锌的溶解,在第一、二段浸出条件分别为:反应温度90℃、液固比10∶1、浸出时间4 h;初始硫酸浓度160 g/L、反应温度90℃、液固比10 m L/g、浸出时间4 h的试验条件下,采用两段逆流浸出工艺处理该渣,锌、铟的浸出率分别为96.53%、94.85%。  相似文献   

5.
对铅冶炼难处理复杂氧化锌烟尘碱洗渣进行了"中性浸出—酸浸"工艺试验研究。结果表明,碱洗渣中性浸出时,锌、镉的浸出率先随浸出温度、液固比、搅拌速度和时间的增加而提高,后增速变缓;中浸渣酸浸时,液固比对锌、铟的浸出率无明显影响。锌、铟的浸出率随初始酸度、浸出温度和时间的增加先增加后变缓。中性浸出最佳条件为:温度338K、液固比5∶1、搅拌速度400r/min、浸出时间1h,此条件下,锌、镉的浸出率分别为80.3%和76.3%。中浸渣酸浸最佳条件为:初始酸度100g/L、浸出时间2h、浸出温度363K、液固比5∶1,在该条件下,锌、铟的浸出率分别为97.1%和85.5%。  相似文献   

6.
钢铁厂冶炼过程产生的含锌固体废弃物经烟化挥发得到氧化锌烟尘,具有来源广、成分复杂、原料波动性大的特点。以该氧化锌烟尘为研究对象,针对现行湿法炼锌常规工艺处理流程存在原料适应性差,锌直收率低,浸出渣中铅难以富集的问题,本文研究了氧化中浸-加压酸浸组合技术工艺,考察了液固比、反应时间、浸出温度、氧化剂等因素对锌、铟及主要金属离子浸出的影响。结果表明,采用氧化中浸技术在温度60 ℃、液固比3.9 mL/g、中浸1 h、中和2 h、过氧化氢用量62 mL/kg的条件下,锌浸出率达到80%以上,中浸液中铁含量<20 mg/L,可实现锌的浸出与铁的同步沉淀;中浸渣采用加压酸浸技术,利用氧化中浸渣中沉淀的三价铁对硫化物进行氧化浸出,在不添加氧化剂、温度125 ℃、液固比2.5 mL/g、浸出时间3 h,浸出剂酸浓度为150 g/L的条件下,锌和铟浸出率分别达98%和90%以上,锌与铟可同时高效浸出,且可同步实现浸出液中铁价态的控制,加压酸浸液中铁浓度在17 g/L左右、其中二价铁浓度在16 g/L左右,90%以上的铁为二价铁,易于后续溶液处理,加压酸浸渣铅含量≥30%,富集比高。该工艺解决了常规工艺锌直收率低的问题,简化了工艺流程,提高了原料适应性,实现了氧化锌烟尘的高效综合利用。  相似文献   

7.
以含铟的锌渣氧粉为原料,以硫酸为浸出剂,研究了锌渣氧粉在高压釜中浸铟时氧化剂种类和用量、酸初始浓度等工艺条件对铟浸出率的影响。结果表明,加压和氧化对铟的浸出过程都有较好的强化效果。在液固比为8、反应时间为150min、搅拌速度为575r/min、反应温度为90℃、空气压力为0.5MPa(表)和硫酸初浓度为500g/L的浸出条件下,在双氧水用量为0.5mL/(g矿)、高锰酸钾用量为0.025g/(g矿)时,铟浸出率可达到90%以上,比无氧化剂常压浸出提高了13个百分点。  相似文献   

8.
利用L_(16)(4_5)正交试验研究了低品位氧化镍矿酸浸过程中酸浓度、液固比、浸出时间、浸出温度和搅拌速率对镍浸出率的影响。通过极差分析和方差分析对试验结果进行了分析,结果表明,影响镍浸出率的因素显著性依次为液固比浸出温度硫酸浓度浸出时间搅拌速率。镍的浸出优化条件为液固比为4∶1,浸出温度为100℃,硫酸浓度为5.2 mol/L,浸出时间2.5 h,搅拌速率为250 r/min,在此条件下镍的浸出率可达98.23%。研究可为优化类似镍矿酸浸工艺提供参考。  相似文献   

9.
以含铟的锌渣氧粉为原料,以硫酸为浸出荆,研究了锌渣氧粉在高压釜中浸铟时氧化剂种类和用量、酸初始浓度等工艺条件对铟浸出率的影响.结果表明,加压和氧化对铟的浸出过程都有较好的强化效果.在液固比为8、反应时间为150min、搅拌速度为575r/min、反应温度为90℃、空气压力为0.5MPa(表)和硫酸初浓度为500g/L的浸出条件下,在双氧水用量为0.5mL/(g矿)、高锰酸钾用量为0.025g/(g矿)时,铟浸出率可达到90%以上,比无氧化剂常压浸出提高了13个百分点.  相似文献   

10.
用人工合成的硫化铟模拟实际硫化铟,研究了硫化铟在硫酸体系中常规浸出和以高锰酸钾、双氧水为氧化剂的氧化浸出的浸出效果和工艺条件。结果表明:在搅拌速度为800 r/min、物料粒度为75~96 μm、液固比为300∶1、温度为80 ℃、硫酸初始浓度为2.0 mol/L的条件下,常规浸出60 min,铟的浸出率为84.9%;而在相同条件下加入氧化剂KMnO4或H2O2进行氧化浸出,只需20 min就可使铟的浸出率达到94.9%或92.8%。在温度<70 ℃时,氧化剂的效应起主要作用,高锰酸钾的氧化效果比双氧水更明显;在温度>70 ℃时,温度效应占主导地位,两种氧化剂的影响差别不大。  相似文献   

11.
含铟锌渣氧粉加压氧化浸铟的工艺研究   总被引:2,自引:1,他引:1  
研究了含铟锌渣氧粉在加压和加入氧化剂的条件下与工业硫酸反应时硫酸初浓度、浸出时间、反应温度、氧化剂用量等工艺条件对铟浸出效果的影响。研究结果表明,加压和加入氧化剂高锰酸钾对锌渣氧粉的浸出有较好的强化作用,能明显提高铟浸出率。其最佳工艺条件:硫酸初浓度为400 g/L,反应时间为120 min,反应温度为120 ℃,高锰酸钾用量为矿样量的4%,液固比为8,反应压强为0.5 MPa,搅拌器转速为400 r/min。在此条件下,锌渣氧粉的铟浸出率可达到90.6%。  相似文献   

12.
电弧炉烟尘湿法提锌研究   总被引:3,自引:0,他引:3  
罗伟  徐政  张寒霜  杨丽梅  李岩 《金属矿山》2011,40(2):153-156
江苏苏钢集团电弧炉炼钢烟尘含锌15.4%,并主要分布在铁酸锌中。对该炼钢烟尘进行浸出试验,结果表明:以氢氧化钠为浸出剂进行碱性浸出时,锌的浸出率仅为34.0%;以硫酸为浸出剂进行酸性浸出时,在搅拌转速为420 r/min,硫酸浓度为200 g/L,液固比为10∶1,反应温度为90 ℃,浸出时间为2 h的条件下,锌的浸出率达到98.7%。  相似文献   

13.
开展了酒石酸盐强化氧化锌烟尘回收锌工艺实验研究,分别考察了NH3-H2O、NH3-(NH4)2O6C4H4-H2O、NH3-C4H6O6-H2O、NH3-C4H8Na2O8-H2O及(NH4)2O6C4H4-H2O体系对锌浸出率的影响。结果表明,NH3-C4H6O6-H2O体系浸出氧化锌烟尘效果较佳。进一步研究了NH3-C4H6O6-H2O体系下酒石酸浓度、浸出时间、搅拌速度等因素对锌浸出率的影响,研究结果表明:控制酒石酸浓度为0.7mol/L、氨水浓度为5mol/L、浸出时间为40min、搅拌速度400r/min、液固比为5∶1、浸出温度为25℃条件下,锌浸出率达到76.59%,其中酒石酸浓度、时间、搅拌速度、液固比对锌浸出率的影响显著;X射线衍射、红外光谱分析表明NH3-C4H6O6-H2O体系可实现ZnO的配位溶出,ZnS在酒石酸及酒石酸盐的氨性体系下难以溶出。  相似文献   

14.
为了提高硫酸化焙砂中金和铜的浸出率,降低尾渣金品位,减少铜对氰化浸出过程的影响,考察了焙砂粒度、硫酸浓度、温度对硫酸脱铜率和脱铜渣氰化浸金率的影响。结果表明,焙砂(矿粉粒度-0.045 mm粒级占90.16%)在酸度25 g/L、液固比1.5∶1、80 ℃下浸出2 h,硫酸脱铜率达93.62%。脱铜渣在NH4HCO3用量10 kg/t、液固比1.5∶1、NaCN浓度0.10%条件下浸出60 h,金浸出率高达98.04%。根据研究结果,通过提高硫酸脱铜温度、硫酸浓度和氰化浸出过程增加旋流器和浸出槽数,采用两段浸出-两段洗涤措施,对现有生产流程进行了优化,铜和金回收率得到了明显提高,获得较好的经济效益。  相似文献   

15.
本文以含铟锌浸渣为对象,研究其在硫酸溶液中的浸出动力学。考察了搅拌转速、硫酸浓度、三价铁浓度、反应温度和矿物粒度等实验条件对铟浸出速率的影响。结果表明:其浸出过程可用没有固体产物层生成的“未反应核收缩模型”描述;浸出反应的表观活化能为 J/mol;对硫酸浓度与三价铁浓度的表观反应级数分别为0.985与-0.096;含铟锌浸渣的浸出过程受化学反应控制。  相似文献   

16.
以含铁氰化渣为原料进行了酸浸试验,考察了浸出酸用量系数、浸出温度和浸出时间对铁浸出率的影响。热力学分析结果表明,氰化渣中的铁氧化物在高温、浓酸条件下以可溶性铁离子形式进入浸出液。试验结果表明:在硫酸浓度45%、硫酸用量系数(硫酸理论用量的倍数)1.5、盐酸用量0.1 m L/g、体系沸点温度下、液固比3∶1、浸出时间4 h的最佳条件下,铁浸出率为96.53%;然后采用胶体分散法制备聚合硫酸铁回收浸出液中的铁。浸出渣氰化浸出试验结果表明,金浸出率达到98.82%,为实现氰化渣的综合利用提供了一种新的处理工艺。  相似文献   

17.
废镀锌板炼钢粉尘加压硫酸浸出试验研究   总被引:1,自引:1,他引:0  
对废镀锌板炼钢粉尘加压硫酸浸出工艺进行了研究,并与常压酸浸进行了对比。探讨了初始硫酸浓度、浸出时间、液固比、浸出温度对浸出率的影响。结果表明,采用加压浸出技术可使常温弱酸下不溶的铁酸锌和难处理的硅酸锌高效浸出。在釜内压力0.6MPa、浸出温度140℃、液固比6∶1、搅拌速度500 r/min、硫酸浓度120 g/L、浸出时间1.5 h条件下,浸出矿浆无胶体形成、过滤性能良好,锌、铁浸出率分别为98.35%和3.51%,铅几乎全部进入渣相,浸出液中硅含量仅为0.06 g/L,实现了粉尘中锌与杂质的有效分离。  相似文献   

18.
李岩  徐政  王巍 《金属矿山》2011,40(11):163-165
对超声波强化浸出含铁酸锌的废镀锌板炼钢粉尘进行了研究,并与常规浸出进行了对比。探讨了初始酸浓度、浸出时间、液固比、超声波强度对浸出率的影响。试验表明,采用超声波强化浸出可使常温弱酸下不溶的铁酸锌浸出。在初始硫酸浓度为200 g/L,浸出时间为120 min,液固比为10的条件下,辅以频率为20 kHz、强度为2 W/cm2的超声波加以强化,此粉尘锌的浸出率可达到90%以上。  相似文献   

19.
铜烟尘加压浸出工艺研究   总被引:4,自引:3,他引:1  
采用加压酸浸工艺处理铜烟尘, 研究了反应温度、反应时间、初始硫酸浓度、液固比、氧压等对铜、锌浸出率的影响。最佳浸出工艺条件为:初始酸度0.5 mol/L、液固比10∶1、反应温度115 ℃、反应时间2 h、搅拌转速500 r/min、氧压0.4 MPa, 此时Cu、Zn浸出率分别为95.4%和97.6%, Fe、As浸出率分别为6.6%和14.0%, 同时Pb、Ag等有价金属在浸出渣中得到富集, 实现了有价金属的综合回收。  相似文献   

20.
在压力场下从石煤中浸取钒和浸出渣综合利用   总被引:2,自引:0,他引:2  
本文对贵州某地石煤进行了加压酸浸提钒实验研究。在压力场条件下,考察了反应时间、硫酸浓度、反应温度、液固比、添加剂(FeSO4)浓度对钒浸出率的影响,同时进行了两段逆流浸出实验。结果表明钒浸出率可达90%以上。浸出液经过废酸回收、还原、调整pH值等预处理后,采用溶剂萃取的方法能够有效地分离和富集钒,钒萃取率可达98.1%,反萃率为99.14%;用氨水沉淀反萃液中的钒,得到的NH4VO3在550℃下煅烧3h即可产出合格的粉状V2O5。浸出渣可制成建筑材料,全流程钒回收率为85%左右,资源综合利用率大于85%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号