首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
史达  刘杰  侯鹏程  韩跃新 《中国矿业》2021,30(7):140-145
鞍千选矿厂现有流程磨矿产品存在粗细分布不均匀、再磨效率低、能耗高、磨矿效果差等问题,影响后续分选过程,导致精矿指标差。针对以上问题,为改善预选精矿磨矿效果,提升最终精矿指标,有必要采用更适于细磨的立式搅拌磨机,对搅拌磨机各项参数进行系统的研究。本文在鞍千预选精矿工艺矿物学分析的基础上,进行了搅拌磨磨矿—弱磁分选工艺流程试验。试验结果表明:预选精矿TFe品位为39.62%,主要以磁铁矿形式存在,粗细粒级分布不均。通过对陶瓷球搅拌磨工艺参数的优化试验研究,确定了搅拌磨最佳工艺参数:介质充填率为100%,搅拌器转速1000 r/min,料球比0.7,介质尺寸6 mm,磨矿浓度50%,磨矿时间2.80 min,磨矿产品经过一段弱磁选,可以获得品位67.01%,回收率89.93%的精矿指标。该工艺流程简单,指标良好,可为选矿厂工艺流程改造提供参考。  相似文献   

2.
为将马钢张庄铁矿现场铁品位为65.52%的铁精矿中的SiO_2含量降低至4%,进行了张庄铁矿石的提铁降硅选矿试验。试验通过采用粗粒预选—一段磨矿—1次弱磁选—二段磨矿—1粗1精弱磁选—三段磨矿—1粗1精弱磁选工艺流程,可获得铁精矿产率37.35%、全铁品位68.97%、含SiO_2 3.70%的良好指标,可为现场技术改造提供参考。另将三段磨矿细度放细到-0.030 mm 90%的条件下,进行了用弱磁精矿生产超纯铁精矿的探索试验,采用反浮选工艺脱硅,最低可获得SiO_2含量0.26%、全铁品位为71.58%的高纯铁精矿。  相似文献   

3.
为了确定抚顺某磁铁矿石生产超级铁精矿的工艺流程进行了选矿试验。试验采用高压辊磨闭路辊压(湿筛)—粗粒中场强磁选—磨矿分级—弱磁选—预先分级—磨矿分级—弱磁选—浮选流程处理。在高压辊磨机工作压力为8.5 MPa、一段磨矿细度为-0.075 mm占65%,高品位铁精矿高频细筛筛孔宽为0.075 mm,塔磨再磨细度为-0.038 mm占90%,高纯铁精矿1粗2精阳离子反浮选,捕收剂十二胺分段添加量为16.37+8.18+3.27 g/t情况下,可获得:全铁品位为68.01%、全铁回收率为86.21%的高品位铁精矿;全铁品位70.95%、全铁回收率为42.32%的高纯铁精矿,全铁品位为65.40%、全铁回收率为43.89%的副产铁精矿;全铁品位为71.81%、全铁回收率为17.93%、酸不溶物含量0.14%的超级铁精矿,全铁品位为67.08%、全铁回收率为68.28%的副产铁精矿。  相似文献   

4.
新疆西昆仑铁矿为石膏型磁铁矿,是一种新的磁铁矿类型—帕米尔型磁铁矿。针对原矿磁铁矿嵌布粒度较粗的特点,采用磨矿—磁选工艺获得普通铁精矿,再采用再磨—磁场筛选法精选工艺,获得了高纯铁精矿,最终获得的分选指标为:精矿产率19.39%、全铁品位71.86%、二氧化硅含量0.46%,该研究对于同类型铁矿的深度开发有一定的指导意义。  相似文献   

5.
采用阶段磨矿—阶段磁选—脱泥的选矿工艺 ,处理含铁 6 0 .0 %、含二氧化硅 8.0 %的试验样品 ,可获得含铁 70 .5%、铁回收率 72 .92 %、含二氧化硅 0 .6 7%的高纯铁精矿  相似文献   

6.
某磁铁精矿铁品位为56.14%,硫含量为9.18%,95.75%的硫为磁黄铁矿中的硫。为达到铁精矿硫含量1%的目标,按磨矿—弱磁选—浮选原则流程进行提铁降硫选矿试验。结果表明,磁铁精矿在磨矿细度为-0.043 mm占85%的情况下,采用1粗1精弱磁选脱硅—1粗2精反浮选脱硫流程处理,可获得铁品位67.39%、硫含量0.80%的铁精矿,以及铁品位为62.54%、硫品位为17.50%的高铁硫精矿,为此类高硫磁铁精矿的提铁降硫提供了技术参考。  相似文献   

7.
用唐钢石人沟铁精矿生产超级精矿   总被引:1,自引:0,他引:1  
以石人沟铁矿精矿粉为原料生产超级铁精矿,进行了磨矿一反浮选,分级-反浮选和分级-低磁场磁选等试验,并按磨矿-反浮选方案建成了生产超级铁精矿的选矿厂。实践证明阳离子反浮选是生产低硅高纯铁精矿的可靠工艺。  相似文献   

8.
为提高硫精矿品质及综合回收锌资源,进行了详细的选矿试验研究。针对某矿样中矿物嵌布粒度细的特性,采用抑硫混浮铅锌的优先浮选工艺流程。在条件试验的基础上,进行了矿样一次磨细入选及不磨矿-粗精矿再磨再选两个不同条件优先浮选工艺的闭路试验,试验均获得了较好的选矿指标。对比两种工艺流程结果,确定了最佳的工艺流程,最终可以得到锌品位40.99%、锌回收率72.72%的锌精矿,并且使硫精矿的锌+铅含量降低至1.00%。不仅提高了硫精矿品质,而且实现了锌的二次综合利用,提高资源综合利用水平。  相似文献   

9.
为合理开发利用尼新塔格矿区铁矿石,进行了原矿预选试验,对其预选精矿进行了阶段磨矿—单一弱磁选、阶段磨矿—弱磁选—磁重选和阶段磨矿—反浮选3种流程试验。试验结果表明:干选可抛除产率为9.47%的尾矿,而预选精矿3个工艺流程的试验结果相近;最终推荐采用干式磁选抛尾—干选精矿阶段磨矿—单一弱磁选工艺流程选别,并获得了精矿铁品位为63.52%、回收率为71.57%的技术指标。  相似文献   

10.
本文主要分析了柿竹园有色金属矿选矿厂铋精矿含硅偏高的原因,针对这些原因采取了磨矿脱硅的工艺。小型试验结果指出,硫化矿全浮选混合精矿磨矿脱硅后,可大大减少混合精矿中的硅含量,脱硅率可达50%以上。同时指出了磨矿脱硅比不磨矿脱硅的效果要好得多。在小型试验的基础上进行了工业试验,工业试验结果表明,采取磨矿脱硅的工艺后,铋精矿含硅降至8%以下,铋精矿的主品位和铋回收率均比不磨矿脱硅的高。硫化矿全浮混合精矿磨矿脱硅后再分离的工艺在工业生产中取得了预期的效果,不仅降低了铋精矿的硅含量,而且提高了铋的回收率。  相似文献   

11.
阿坝矿业的高纯铁精粉硅铝含量较高,影响了产品的售价。为了降低铁精粉的硅铝含量进行了提质降硅铝工艺研究。结果表明,试样再磨至0.063~0 mm后经弱磁选、谐波磁选、磁选柱磁选、1粗1精反浮选,最终可获得Fe、SiO2、Al2O3含量分别为72.38%、0.099%、0.131%的高纯铁精矿,以及Fe、SiO2、Al2O3含量分别为71.58%、0.375%、0.220%的二级铁精矿。  相似文献   

12.
河北某普通磁铁矿 TFe 品位为65.25%,矿石性质结构简单,具有制备超纯铁精矿的潜力。本研究采用多元素及X射线衍射图、物相分析等方法对原矿进行了工艺矿物学研究,并在此基础上对其进行了提纯试验。结果表明,原矿经过弱磁选粗选后,在磨矿细度-0.038 mm占85%的条件下经弱磁选再选、磁选柱精选得到TFe 品位为71.31%的磁选柱精矿以及TFe品位68.12%,产率为3.32%的磁选柱铁尾矿。通过进一步考察药剂制度和工艺流程对铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度。而后磁选柱精矿经1粗3精反浮选降硅工艺试验流程,最终可获得含TFe品位71.95%,综合回收率为80.50%的超纯铁精矿,浮选尾矿 TFe品位 68.17%符合普通铁精矿标准。通过对选别产品进行试样化学成分分析及残余药剂测定,进一步证明该工艺流程可以实现超纯铁精矿的制备。该工艺在抛尾率为 10.79%条件下,将原矿样的 73.04%转化为超纯铁精矿,对这一地区超纯铁精矿的制备具有重要的指导意义,也为国内其他地区磁铁矿制备超纯铁精矿的研究提供了一定的参考价值。  相似文献   

13.
铜冶炼渣中铁含量达30%~40%,但铁元素主要以铁橄榄石的形式存在,采用传统方法难以回收利用。以可再生生物炭为还原剂,通过深度还原—磁选回收铜冶炼渣中的铁,考察了还原条件对铜冶炼渣深度还原的影响。当还原温度为1 200 ℃、还原时间为75 min、CaO用量10%、碳氧摩尔比为1.5时,深度还原产品的金属化率达到86.83%,经过磨矿磁选可获得铁品位为62.84%、回收率为81.92%的磁选精矿。铜冶炼渣中主要含铁矿物有Fe2SiO4、Fe3O4及少量的Fe2O3,其还原过程为Fe2SiO4→FeO→Fe、Fe2O3→Fe3O4→FeO→Fe,得到的金属铁逐渐聚集长大最终形成有利于磁选分离的金属铁颗粒。  相似文献   

14.
反浮选制取高纯铁精矿的研究   总被引:4,自引:1,他引:3  
小型试验和半工业试验表明,将安庆铜矿生产中含TFe64.68%,SiO24.62%的普通铁精矿经旋流器分级,溢流磁选,磁精矿反浮脱硅,可获得产率9.23%,TFe69.07%的高纯铁精矿和含TFe4.48%的铁精矿。  相似文献   

15.
采用浅部矿的预选工艺对秘鲁某金铜铁多金属矿含Cu 0.127%、Au 0.08 g/t、S 2.08%、Fe 40.56%的深部矿石进行了选矿预选富集试验研究,为该矿石的合理预选工艺提供参考。结果表明,浅部矿的预抛—分级预选工艺(原矿-25 mm干抛—干抛精矿高压辊磨细碎—高压辊磨细碎产品湿抛—预抛尾矿分级回收)对深部矿石具有较好的适应性和预选富集效果,最终获得铜品位0.13%、铁品位48.76%、铜回收率87.49%、铁回收率97.93%的总预选精矿,总预选抛尾率为18.84%。项目成果为该矿石的合理预选工艺选择提供了参考,并为提高选厂后续磨浮作业的矿石入选品位,降低入磨矿量和磨选成本,综合回收矿石中铁铜等伴生有价金属创造了良好的前提条件。   相似文献   

16.
刘旭  杨晓  彭泽友 《矿冶工程》2022,42(2):55-58
针对山东某铁精矿中硫含量高的问题,进行了脱硫试验研究。采用浮选-弱磁选原则流程,同时兼顾现场生产条件,最终在磨矿细度-0.075 mm粒级占54.67%条件下,获得了产率2.47%、硫品位37.62%、硫回收率78.75%的硫精矿和产率53.57%、铁品位64.47%、含硫0.27%、铁回收率82.53%的铁精矿,实现了铁和硫的综合回收。研究结果可为选厂现场铁精矿降硫提供技术依据。  相似文献   

17.
河北某难选赤铁矿强磁选—反浮选试验研究   总被引:1,自引:0,他引:1  
采用阶段磨矿—阶段强磁选—强磁选精矿反浮选工艺流程对铁品位不到25%的河北某难选赤铁矿石进行选矿试验,在-0.074mm占96.20%的最终磨矿细度下,取得了精矿产率为25.43%,铁品位为66.27%,铁回收率为68.49%,总尾矿铁品位为10.39%的选别指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号