首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究厚松散含水层薄基岩下厚煤层综放开采的安全性,从黏土采动隔水性和近第四系底部导水裂缝带发育特征两个方面进行了讨论。以潞安矿区三元煤矿为例,通过对开采区域第四系松散层的不同深度进行取样和实验室试验分析,得到了特定地质条件下黏土的物理力学特性和水理特性。通过选取合理的黏土隔水层采动失稳判据,评价分析了第四系底部厚黏土隔水层综放高强度开采后隔水性能的变化状态。采用数值模拟和现场实测方法研究了厚松散层薄基岩条件下近第四系底部覆岩破坏和采动裂缝发育规律。研究表明:①三采区第四系松散层黏土随着埋深增大,其力学性能呈增大趋势,埋深超过130 m时,黏土的液性指数甚至降至0以下,深埋黏土具有良好的原生隔水性能;②黏土采动隔水性评价结果表明,区内第四系底部黏土采动后仍然具有良好的隔水能力,能很好地抑制导水裂缝带上行扩展;③近第四系底部开采导水裂缝带高度仅发育至第四系底部黏土。实例分析表明:三元煤矿3301工作面在顶板基岩厚度仅为36~55 m、煤层厚度7 m的情况下,实现了地表水体和第四系松散含水层水体下的综放安全开采,为类似水体下采煤实践提供了有益参考。  相似文献   

2.
为研究三元煤矿3301工作面在复合水体(地表水和第四系松散含水层)薄基岩下厚煤层综放开采安全性,采用地质钻探方式确定了第四系底部粘土隔水层的覆存状态,采用数值模拟和现场实测方法研究了薄基岩条件下近第四系松散层底部综放开采顶板覆岩破坏和采动裂缝发育规律。探测结果表明,三采区第四系底部有一层稳定的粘土隔水层,能有效阻隔复合水体下渗和抑制导水裂缝带的上行扩展。数值模拟和实测结果表明导水裂缝带高度发育至第四系底部粘土层底界面。采用顶板水预先探放和留设防塌煤岩柱技术方案在薄基岩条件下实现了地表水体和第四系松散含水层复合水体下综放安全开采。  相似文献   

3.
毛乌素沙漠区多个近地表含水层支撑着区域生态环境、生产和生活,开展保水采煤研究势在必行。而"保水安全厚度"计算作为保水采煤研究的核心内容,由于各近地含水层的性质以及所处垂向位置的差异,导致了针对毛乌素沙漠区的保水安全厚度计算方法适用范围有限、缺乏统一性。通过分析毛乌素沙漠区内含隔水层在垂向和平面上的展布特征、水文地质性质,结合不同区域内的工程地质条件和开采方法,探讨了保水安全厚度的定义。将煤层之上地层划分为目标保护层、预测导水段(导水裂隙带发育段)和等效保水段(由有效黏土隔水层和基岩层组成的保水段)。利用水均衡法分析了黏土隔水层与基岩层间的保水性能关系,通过"保水比例系数"形成了黏土隔水层与基岩层间统一的等效保水段计算方法。建立了具有能够适用毛乌素沙漠区内"沙-基(岩)型开采区"、"沙-土-基(岩)型开采区"、"沙-土-洛(洛河组含水层)-基型开采区"、"烧变岩型开采区"等主要不同地质条件的保水安全厚度计算模型。根据导水裂隙带的发育高度与黏土隔水层、基岩层间的导通特征以及煤水间距与保水安全厚度的大小关系,制定了煤层开采影响的自然保水区、一般失水区和严重失水区的分区标准。并以榆神矿区小保当煤矿为例,应用建立的统一模型确定了小保当井田内砂-基型和砂-土-基型开采区内的保水安全厚度,并据此评价了煤层开采对潜水含水层的影响。所建立的保水安全开采厚度计算模型以及开采分区评价标准具有良好的适应性,也为保水采煤研究中有关保水安全厚度的计算和煤层开采对上覆含水层的影响评价提供了新思路。  相似文献   

4.
结合潞安矿区水体下采煤实例,分析研究了综采放顶煤条件下覆岩破坏规律与导水裂缝带发育规律,提出了综采放顶煤导水裂缝带最大高度的计算方法和计算公式,并在多个矿井成功进行了水体下综采放顶煤开采技术实践,有效保护了矿区水资源和生态环境。综采放顶煤条件下,导水裂缝带的发育高度要比普采条件下、分层综采条件下大得多,综采放顶煤条件下的裂高采厚比与分层开采初次采动的裂高采厚比基本相同,导水裂缝带的发育形态仍呈马鞍形。  相似文献   

5.
漳河水库下厚煤层综放开采技术研究   总被引:1,自引:0,他引:1  
为保障五阳煤矿7802工作面漳河水库下厚煤层综采放顶煤安全开采,研究综放开采导水裂缝带高度发育规律,探讨了综放采场覆岩结构破坏及采动渗透性间关系,计算了水库下综放开采安全所需防水煤柱高度,制定相应的防治水技术措施。结果表明:中至坚硬覆岩综放开采导水裂缝带发育高度基本与煤层一次采高成正比,比例系数为20.22;煤层顶板基岩厚度大于水库下安全开采所需煤柱高度;监测知井下工作面涌水与地表水体没有水力联系,实现水库下压煤安全开采。  相似文献   

6.
隔水关键层破断失稳是矿井水害及开采引起的生态脆弱区水资源破坏的根本原因,准确有效地对隔水关键层稳定性进行科学监测,是实现保水开采及岩层控制的重要基础。隔水层稳定性尚无有效直接监测手段,常采用钻孔探测、理论分析及数值模拟等计算导水裂隙带高度间接评判隔水层导通性。随着光纤传感技术的发展,将光纤布拉格光栅(FBG)、分布式光纤(BOTDA)等技术用于采动覆岩隔水关键层稳定性监测,为光纤传感技术在相似模型试验中的推广提供依据。研究表明:浅埋煤层当基岩厚度仅为60~67 m时,开采厚度为2 m的煤层时导水裂隙带将直接发育至地表,势必造成基岩含水层水体破坏,结构关键层裂隙被其上软弱岩层充填弥合具有一定隔水性,两侧断裂线及其附近发育的纵向裂隙成为主要渗流通道;分布式光纤检测应变因岩层断裂位臵应力集中而呈现"双峰"特征,峰值位臵与断裂线基本对应,可通过传感光纤预测采动覆岩破断线位臵分布;给出基于光纤传感检测的隔水关键层破断极限应变阈值为2 000με;光纤光栅可对特定位臵岩体变形进行精准监测,检测隔水关键层破断失稳位臵与实际观测及分布式光纤检测结果基本一致。  相似文献   

7.
针对彬长矿区火石咀煤矿七采区地表堰塞湖下特厚煤层综放安全开采问题,采用现场实测、工程类比等方法研究分析了特厚煤层综放导水裂缝带发育高度,验算了水体下采煤防水煤岩柱尺寸,并类比开采案例分析了堰塞湖下采煤安全性。采用概率积分法计算了堰塞湖地表沉陷变形,预测了湿陷性黄土开采地表裂缝极限发育深度和采动扰动坡体稳定性。研究结果表明:彬长矿区特厚煤层综放导水裂缝带发育异常剧烈,裂采比达到20倍;堰塞湖下煤层顶板基岩厚度远大于所需安全防水煤岩柱尺寸,采取合理的技术措施可以实现地表水下安全开采;地表沉陷不会使堰塞湖淹没面积大幅增加。目前堰塞体稳定性良好,短期不会出现湖水漫坝情况。预测地裂缝最大发育深度达12.8 m,受地形影响堰塞体及湖底地裂缝发育受到抑制,不会导致堰塞湖水体渗漏。采动影响会扰动地表特别是东侧塬体的稳定性,地表沉陷和地裂缝会对临空坡体的崩落滑坡产生促进作用。  相似文献   

8.
控制采动导水裂缝带不波及隔水层是水体下安全开采的关键.在软硬互层覆岩中的软弱泥岩和近风化带覆岩是两类典型的软弱覆岩.实例分析表明,软弱覆岩在导水裂缝带的发育过程中具有抑制性作用,近风氧化带内开采,导水裂缝带高度将显著下降;而厚层覆岩内泥岩只有赋存于导水裂缝带高度经验范围内,其抑制导水裂缝带发育作用明显.  相似文献   

9.
为实现矿井安全生产和水资源保护,针对蔚县煤田兴源矿区基岩薄且第四系含水层直接接触基岩的特点,通过钻孔探测煤层上方基岩厚度、分布范围及第四系底部砂砾岩含水层富水性,计算垮落带及导水断裂带发育高度,确定了采高2.0、2.5与3.0m时的防水安全煤(岩)煤柱高度分别为53、56和64 m,最终提出了分段限制采高、分段控制断裂带高度和分段留设防水安全煤(岩)柱的分段保水开采技术.该技术成功实现了兴源矿6402工作面薄基岩下安全回采和第四系含水层水资源保护,效益显著,对类似该矿区地质条件水体下安全保水采煤提供了丰富的成功经验.  相似文献   

10.
以永陇矿区崔木煤矿为研究背景,分析矿区含(隔)水层与煤层的空间组合及覆岩特征,结合导水裂隙带发育高度探查结果,开展巨厚砂砾岩含水层下特厚煤层保水开采分区及实践研究。结果表明:该区导水裂隙带发育高度为煤层采厚的19.93~23.23倍,已波及上覆白垩系含水层。以所确定的保水开采保护层厚度30 m为阈值,将研究区划分为自然保水开采区、可控保水开采区和保水限采区,并提出各分区相应的保水开采途径。实践表明:巨厚砂砾岩含水层下保水开采的有效途径主要包括控制导水裂隙发育高度,选用适当的工作面布局及推进速度,以及隔水层采动破坏后的恢复与再造。  相似文献   

11.
为了分析煤层开采对第四系松散含水层的影响,选择潞安矿区漳村矿为试验现场,通过浅部至深部煤层开采项板导水裂隙发育高度的理论分析、数值模拟和实际观测资料对比,研究采高6m,采动导水裂隙发育规律及对松散含水层的影响.结果表明:煤层埋深小于110 m区段,导水裂隙可突破第四系底部黏土隔水层而发育至第四系松散含水层,并对该含水层造成破坏;煤层埋深介于110~190 m区段,导水裂隙仅发育至基岩风氧化带,风化裂隙水可进入采场,对第四系底部松散含水层水影响较小;煤层埋深大于190 m区段,采动导水裂隙发育限制在完整基岩内,仅将顶板砂岩裂隙水引入采场.据此分析,漳村矿对采高6m、埋深大于190 m的中深部煤层的开采对第四系松散含水层几乎无影响.  相似文献   

12.
《煤矿开采》2017,(3):78-81
通过对43下20工作面水文地质资料及钻探结果的分析,揭示了第四系厚松散层含、隔水层特征、底部黏土厚度及隔水性以及上覆薄基岩结构特征,建立了厚松散层、薄基岩工作面回采数值模型,计算得出冒落带发育高度为14m,导水裂缝带发育高度33m;确定工作面开采安全煤岩柱类型为"顶板防砂安全煤岩柱",并计算得到防砂安全煤岩柱高度为24.3m。结果表明:导水裂缝带及理论计算煤岩柱高度均小于最薄基岩厚33m,工作面开采厚度为2.5m时不具有突水溃砂风险。  相似文献   

13.
“煤-水”矛盾已成为制约榆神府矿区煤炭安全高效绿色开采的主要因素。为缓解区内煤炭开采与水资源保护之间矛盾,切实保护水资源和生态环境,以榆神府矿区内典型煤矿为例,研究揭示了煤水赋存特点,构建了采动含水层失水模式,初步探讨了水资源保护整体思路和技术。研究成果表明:榆神府矿区内存在地表水和地下水2大类水资源。地表水以海子、地表径流以及泉的形式赋存,地下水则有萨拉乌苏组潜水、烧变岩水和风化基岩水3种重要类型。按照含水层与导水裂隙带的位置关系,将其分为低位含水层和高位含水层2类。低位含水层失水模式为导通漏失型,高位含水层存在非导通垂向渗失和渗流溢出蒸发散失型2种失水模式,前者发生于高位承压含水层中,后者则主要是高位潜水含水层的失水模式。低位含水层可通过导水裂隙带发育高度控制技术、采后顶板注浆加固技术实现水资源保护,高位含水层可通过人工隔水层再造、离层注浆以及协调开采技术实现水资源保护。对于无法实施原位保护流入采空区的水则可通过地下水库存储、净化循环利用和深部回灌等矿井水综合利用技术处理间接实现水资源保护。  相似文献   

14.
转龙湾煤矿首采工作面煤层埋深160 m左右,基岩厚度60~120 m,属于浅埋薄基岩开采。本文分析了转龙湾煤矿II-3煤层覆岩特征,井下现场探测了首采试验区的采动覆岩破坏导水裂缝带发育高度,采用有限差分数值仿真方法模拟了薄基岩浅埋煤层综放开采条件下的覆岩运移破坏过程。研究表明,采动覆岩塑性破坏区的形态经历了"马鞍形"—"拱(箱)形"的演化发育过程;随着采动空间的增大,采空区两端超前破坏裂隙扩展速度较中部变慢,最大导水裂缝带发育高度位于采空区中部,裂采比为20。  相似文献   

15.
针对我国水体下保水采煤的理论与实践,就采动覆岩导水裂隙演化规律,以及在此基础上形成的保水采煤技术研究进展进行了综述和展望。结果表明:导水裂隙作为地层含水层破坏与地下水漏失的主要根源,其动态发育与发展直接受控于覆岩关键层的破断运动;因而,可按具体开采条件下覆岩关键层的赋存情况进行导水裂隙带高度的确定,从而科学指导水体下保水采煤对策的制定。依据水体下保水采煤所包括的4个层次的内涵,分别从顶板突水灾害防治、含水层原位保护、采动破坏含水层的再恢复、采动漏失水资源的转移储存与利用等4个方面,进行了相关保水采煤技术研究进展的论述,在此基础上提出了今后的研究方向。  相似文献   

16.
张玉军  李凤明 《煤炭学报》2016,41(Z1):44-52
随着我国煤炭资源的大规模和高效开采,薄基岩浅埋深的矿区常发生切冒、抽冒、台阶下沉,造成水资源和环境破坏严重。但是,赋存于萨拉乌苏组含水层下伏的连续黏土层的存在,使得基岩及其黏土隔水层组合结构下采动破坏规律不同于传统的基岩岩层,这将为防治矿井突水和实现保水采煤提供了条件。论文采用数值模拟和理论分析的方法,模拟了“黏土隔水层-基岩风化带-基岩”结构特征下不同黏土层与基岩厚度条件下覆岩(土)裂隙发育、顶板破断运动的基本特征,获得了浅埋深条件下采动覆岩(土)的破坏变异规律与发育高度,分析了溃沙的致灾因素和预测判据,并据此提出防治突水溃砂的技术手段。研究结果表明:浅埋煤层“沙土基型”覆岩(土)结构条件下,由于不同基岩与土层厚度的控制作用,使得覆岩(土)破坏发育高度和特征产生变异;水砂源、通道、动力源和空间是近松散含水层溃砂的主要致灾因素,并提出了预测溃沙发生的判据;可通过防止顶板切冒、含水砂层水头压力疏降、局部注浆固沙和合理留设防砂(塌)煤岩柱等技术控制浅埋煤层溃砂灾害发生。  相似文献   

17.
综放开采导水裂缝带的发育特征与最大高度计算   总被引:3,自引:0,他引:3  
根据现场不同矿区的实测资料,探讨了综采放顶煤条件下导水裂缝带发育规律和特点,研究了综采放顶煤导水裂缝带最大高度的计算方法和计算公式。结果表明:综采放顶煤条件下,导水裂缝带的发育高度要比普采条件下、分层综采条件下大,分别增大1.37倍和2.31倍。综采放顶煤的裂高采高比与分层开采初次采动的裂高采高比基本相等,导水裂缝带的发育形态仍呈马鞍形。在进行水体下综采放顶煤开采时,可利用给出的计算公式进行导水裂缝带最大高度的计算。  相似文献   

18.
易四海  朱伟  刘德民 《煤炭工程》2019,51(11):86-91
为了实现薄基岩厚松散层地质条件下水体压覆煤层的安全开采,采用相似材料模拟实验、理论分析,探讨了薄基岩厚松散层的采动破坏发育规律,提出了覆岩自稳结构的判据。研究结果表明:厚松散层薄基岩很难在基岩内形成有效的自稳结构,工作面推进一定距离后,基岩将全厚度断裂,松散层将作为一个整体跟随基岩弯曲下沉|解析了厚松散层的采动隔水能力,认为松散层底部岩层岩性、厚度及所受采动变形将是决定导水裂缝带继续向上发育的关键|结合三元矿薄基岩厚松散层水体下采煤,通过地面钻探实测,论证了粘土层具有较好的隔水能力,薄基岩厚松散层导水裂缝带发育高度止于松散层底部。  相似文献   

19.
在浅埋煤层砂土基型矿区实现保水开采,关键在于煤层开采后含水层和导水裂隙带之间有达到厚度要求的隔水保护层.采用开采损害学中的地表移动变形和采动岩体内部移动变形预计的方法,考虑覆岩中隔水黏土层的膨胀性计算浅埋煤层砂土基型矿区开采后隔水土层中裂隙的破坏深度,同时借鉴相似模拟实验确定导水裂隙带的发育高度,最后计算采高不同时2种裂隙之间的隔水保护层厚度,如果隔水保护层厚度满足规定要求就可以实现保水开采,从而确定砂土基型矿区保水开采的合理开采方法.以榆树湾煤矿20102上工作面开采为例,计算结果表明:5m分层开采可以实现保水开采,放顶煤一次采全高不能实现保水开采.现场开采实践和相似模拟实验验证了该方法的正确性.  相似文献   

20.
随着煤层开采深度的逐年增加,非充分采动工作面越来越多。导水裂缝带高度是实现保水开采的关键参数,但非充分采动工作面开采条件下导水裂缝带高度小于充分采动工作面。为进一步研究其原因,采用理论分析、相似模拟、数值模拟等方法研究了导水裂缝带高度影响因素的敏感性及其与工作面尺寸的关系,提出了覆岩破坏充分采动程度的定义及判别方法。结果表明:工作面尺寸对导水裂缝带高度的影响仅次于开采厚度。当工作面尺寸较小时,覆岩破坏不发育;当工作面尺寸增加到一定值时,覆岩破坏仅形成垮落带;当工作面尺寸继续增加时,覆岩破坏形成裂缝带且导水裂缝带高度随着工作面尺寸的增加而增加;当导水裂缝带高度发育至最大值后,导水裂缝带高度不再随工作面尺寸的增加而增加。覆岩破坏过程中仅形成垮落带的阶段定义为覆岩破坏的极不充分采动(即覆岩极不充分破坏);覆岩破坏过程中形成裂缝带且导水裂缝带高度随工作面尺寸增加而增加的阶段定义为覆岩破坏的非充分采动(即覆岩非充分破坏);导水裂缝带高度达到最大值且不再随工作面尺寸增加而增加的阶段定义为覆岩破坏的充分采动(即覆岩充分破坏)。导水裂缝带高度刚达到最大值时的工作面尺寸为工作面临界尺寸。当工作面尺寸小于工作面临界尺寸时,覆岩破坏为非充分采动;当工作面尺寸大于工作面临界尺寸时,覆岩破坏为充分采动。覆岩破坏充分采动程度的主要影响因素有工作面尺寸、开采厚度、开采深度、覆岩力学性质、覆岩结构特征和覆岩破断角。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号