首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
低透气性煤层水力压裂增透技术应用   总被引:4,自引:0,他引:4       下载免费PDF全文
 针对大兴煤矿煤层透气性差、瓦斯抽采效率低、钻孔施工量大等问题,提出了水力压裂增透技术。研究了水力压裂增透机理,分析了水力压裂提高煤层透气性的过程。结合理论研究与现场经验,进行了高压钻孔密封,确定了工艺参数,完成了现场实施。应用效果证明:实施水力压裂后,水力压裂孔及影响区域内瓦斯抽采孔保持了较高的抽采水平,相对于普通抽采孔瓦斯抽采量提高了7.2倍,水力压裂影响区域内煤层透气性系数提高了79~272倍。  相似文献   

3.
针对高瓦斯低透气性煤层瓦斯抽采钻孔施工量大、效率低等问题,研究了水力压裂技术的破煤理论及高压水对煤层的卸压增透理论,提出水力压裂强化抽采瓦斯的措施,以岩土工程数值模拟软件FLAC3D对煤层进行水力压裂数值模拟,得到煤层水力压裂过程中裂纹扩展规律,确定了水力压裂现场试验的工艺参数、压裂装备及抽采系统,完成封孔及压裂试验。  相似文献   

4.
以谢一矿C13煤层作为试验地点,详细阐述了水力压裂技术的基本原理、工艺流程、压裂参数的设置,并分析了水力压裂过程中煤体内部裂隙变化规律。压裂后有效影响半径达25 m,煤层透气性系数增加了42.26倍,瓦斯预抽纯量为原始煤体的4.95倍,煤层预抽达标时间缩短了42%。  相似文献   

5.
针对松软低渗突出煤层瓦斯含量大、难抽采,石门揭煤过程中易发生突出等问题,研究了定向水力压裂增透消突技术。首先,阐明了定向水力压裂增透机理,通过理论计算得出煤层起裂压力、流量、注水量分别为22.8~30.5 MPa、130~200 L/ min和 216 m3。据此,在揭煤预抽巷道内布设4个水力压裂孔和2个裂隙导向孔。压裂过程中,泵压、平均注水流量、单孔注水量分别达到28~31 MPa、140~177L/ min和260~330 m3,同理论计算的数据基本吻合。试验结果表明:定向水力压裂影响半径大于30 m,煤层透气性系数达到0.840 m2/ ( MPa2-d),是原始煤层的60 倍﹔单孔瓦斯浓度提高50%~80%,百孔抽采纯量达 1.9 m3 / min,瓦斯抽采量提高90%。采用定向压裂后,揭煤钻孔工程量缩减64%,抽采达标时间比预计工期提前了36 d。该技术可为类似瓦斯治理工程提供借鉴。  相似文献   

6.
为了解决淮南矿区突出煤层透气性差,原始煤层中钻孔抽采瓦斯流量小,预抽时间长的难题,开展了水力压裂增透技术研究,并在1351(3)工作面进行了试验,对水力压裂效果进行了考察。试验表明:水力压裂增透技术可以扩大煤层中的孔隙和裂隙,增加煤层的透气性,水力压裂影响半径不小于60 m,受水力压裂影响区域与原始煤体区域相比,单孔抽采量增加了260%,单位面积抽采纯量增加了45%,钻孔量减少40%。  相似文献   

7.
李鹏  宣德全 《煤炭技术》2015,34(4):167-169
为了有效缓解煤矿瓦斯治理工作的压力,针对豫西煤田某矿的煤层赋存规律和瓦斯地质特征,在底板岩巷利用井下水力压裂技术进行卸压增透,提高瓦斯抽采效率。  相似文献   

8.
针对煤层透气性低,抽采效果不佳的问题,开展水力压裂增透试验。利用数值模拟软件模拟单孔和三孔孔压裂情况下的起裂压力和裂纹扩展规律。基于数值模拟研究结果,确定水力压裂现场试验工艺参数,利用点式水力压裂装置进行了压裂试验。压裂后试验结果表明:煤层的透气性系数、单孔抽采量、抽采浓度分别是压裂前的18.9倍、2倍和2倍。  相似文献   

9.
李忠群  徐刚  张天军  张超 《煤》2019,(10):14-18
针对低渗煤层水力压裂存在裂缝扩展范围小、增透效果差和在增透影响范围内容易留下空白带等问题,将控制水力压裂引入低渗煤层水力压裂实践。分析了低渗煤层控制水力压裂增透机理,提出了低渗煤层控制水力压裂增透技术及封孔方法,并在夏店煤矿进行了工程应用。结果表明:控制水力压裂使水力裂缝沿着控制孔的方向扩展延伸并有效增加煤层渗透性;组合式封孔技术封孔效果好、成本低,实现了一孔多用;控制水力压裂技术应用后,煤层渗透率有效增大,钻孔瓦斯抽采纯流量为原始煤层的4.969倍,3117工作面瓦斯预抽效果达标,回采期间回风巷瓦斯浓度始终低于0.5%,实现了工作面的安全高效开采。  相似文献   

10.
为解决松软低透气性煤层瓦斯抽采难度大、效率低的难题,以新景煤矿3#煤层为研究对象,采用PFC2D颗粒流数值模拟软件和控制变量法,研究不同注水流量和压裂时间对煤层水力压裂半径、裂缝最大开度和裂缝数目的影响。研究结果表明:松软低透气性煤层水力压裂半径、裂缝最大开度和裂缝数目与注水流量和压裂时间均呈幂函数形式增长。基于松软低透气性煤层的特点,引入压裂液效率,得到了压裂半径、裂缝最大开度和裂缝数目的修正计算公式。基于新景煤矿3#煤层实际工程地质条件,在南五底抽巷进行了现场水力压裂试验。试验结果表明:当泵注压力为20~25 MPa、注水量为90~100 m3时,水力压裂半径约为50 m;水力压裂区域煤层透气性系数、平均抽采瓦斯浓度、百米巷道瓦斯抽采量和单孔平均抽采瓦斯纯流量分别为未压裂区域煤层的22.0、2.2、2.4、2.7倍,为新景煤矿3#煤层水力压裂参数选取和瓦斯抽采设计提供了技术指导。  相似文献   

11.
12.
单一低透气性煤层水力压裂技术增透效果考察分析   总被引:2,自引:2,他引:0  
王念红  任培良 《煤矿安全》2011,42(2):109-112
为了考察水力压裂卸压增透强化抽放快速消突的效果,以义马煤业集团义安矿FD003工作面为试验点,通过考察水力压裂前后瓦斯抽放浓度变化以及压裂后巷道内的情况的变化,得出水力压裂技术提高抽放浓度和抽放量的效果明显。试验结果表明:水力压裂后抽放浓度增大最多的是10#孔,其压裂后的抽放浓度是压裂前的19倍多,且压裂后9个孔的总平均浓度是压裂前9个孔的总平均浓度的5倍。  相似文献   

13.
针对余吾煤业S1206工作面煤层瓦斯含量大、煤层透气性系数低的特点,开展脉动水力压裂试验强化瓦斯抽采,研究了脉动水力压裂卸压增透机理,设计了脉动水力压裂的钻孔参数、封孔工艺和压裂参数。试验结果表明,与普通瓦斯抽采钻孔相比,压裂孔的瓦斯浓度平均提高4.7倍,纯流量平均提高了6.3倍;导向孔的瓦斯抽采浓度平均提高了3.7倍,抽采纯流量平均提高了3.9倍,实现了煤层的快速卸压增透,提高了瓦斯抽采效果。  相似文献   

14.
《煤炭技术》2015,(7):158-161
针对山西石泉煤业高瓦斯低透气性煤层瓦斯难以抽放的问题,结合现场实际,通过采用水力压裂煤层,使得裂隙扩展衍生相互贯通,从而提高煤层透气性,增大瓦斯抽采量及浓度。  相似文献   

15.
为了研究高压脉动水力压裂对单一低透煤层卸压增透的影响,提高抽采效果,以晋煤集团长平矿4306工作面为试验点,压裂前后瓦斯抽放效果的变化表明,高压脉动水力压裂增透技术比普通水力压力增透效果更加明显,显著提高了煤层透气性,钻孔抽采流量和浓度均有大幅度提高。  相似文献   

16.
松软煤层井下水力压裂增透技术及应用   总被引:1,自引:0,他引:1  
针对松软煤层弹性模量、抗压强度和抗拉强度较低,泊松比、孔隙压缩系数较高,易发生塑性变形等特点,将松软煤层井下水力压裂划分为煤体压密、裂缝起裂与裂缝扩展3个阶段,提出压裂工艺参数选择的参考原则,并在松软煤层典型矿区开展水力压裂现场试验。对压裂效果进行考察分析表明,在合理选择压裂工艺参数的前提下,水力压裂对于松软煤层增透作用明显。  相似文献   

17.
由于新元矿煤层透气性差,原有的针对煤巷掘进采取的抽采方式效率不高,抽采出的瓦斯浓度和纯度较低。本文介绍了采用水力压裂增透技术,扩大裂隙范围,形成贯通的裂隙区域,改善煤层透气性,并在压裂后进行增透效果考察,达到了提高瓦斯抽采效率和的目的,保障了矿井的安全高效生产。  相似文献   

18.
为了进一步提升深部低透气性煤层水力压裂增透效果,在煤层水力压裂相关理论研究及现场试验的基础上改进水力压裂工艺,根据相关的力学原理,推导得到压裂孔周边的应力随注水流量的变化情况,提出以控制注入水流量为原则,在水力压裂过程中采用不稳定注入水流量的方法,在平煤十二矿己15-31040工作面进行水力压裂试验。试验结果表明:通过注入不稳定水流量,克服了煤层深部高地应力对水力压裂施工的影响,且压裂过程顶板保持良好;经过测定与己15-31040工作面相邻的己15-31030工作面的常规稳定水流量压裂、未压裂区域瓦斯抽采数据,不稳定水流量压裂单孔抽采瓦斯浓度和瓦斯纯流量比常规水力压裂及未压裂区域均有明显提升。该方法对深部煤层水力压裂增透具有一定的指导作用。  相似文献   

19.
为了提高低透气性煤与瓦斯突出煤层的瓦斯抽采量,达到抽采消突的目的,新元矿进行了底抽岩巷穿层钻孔水力压裂增透技术试验。试验结果表明:压裂前后瓦斯抽采浓度提高了14倍以上,瓦斯抽采纯量提高了18倍以上,水力压裂能够较好的改善煤层透气性,提高本煤层瓦斯抽采钻孔抽采浓度及抽采纯量。  相似文献   

20.
"三软"低透气性煤层抽放钻孔施工过后,钻孔抽放周期短、抽放浓度衰减快、瓦斯抽放量低一直是困扰煤与瓦斯突出矿井的一个难题,为解决这一难题。大平矿在21121底板抽放巷采取了水力压裂增透卸压技术,通过几个月以来的观测,对水力压裂影响区域及未采取水力压裂措施区域抽放浓度进行对比分析,采取水力压裂措施后,能够有效增加钻孔的透气性,使钻孔抽放浓度衰减时间增长,瓦斯抽放量得到大幅提高,并且在水力压裂过后,施工其余钻孔期间,钻孔的产尘量明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号