首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
浅埋煤层大采高工作面应用普遍,其顶板结构理论和支护阻力计算有待深入研究。大采高工作面随着采高增大,顶板冒落带高度增大,部分地质基本顶具有等效直接顶特征。根据等效直接顶垮落充填程度的不同,将等效直接顶分为3种类型,常见的是一般充填型,基本顶将形成高位台阶岩梁结构。在实测和模拟研究的基础上,考虑顶板破断角,建立了浅埋煤层大采高"斜台阶岩梁"结构模型,给出了支架工作阻力的计算公式。最后,实例分析了等效直接顶厚度、基本顶关键块长度、基本顶关键块厚度对支架支护阻力的影响,验证了公式的可靠性。  相似文献   

2.
以陕蒙神东煤田浅埋近距离煤层群开采为背景,采用实测统计、物理模拟与理论分析相结合的方法,研究了浅埋近距离煤层采空区下开采的矿压特征及影响因素,揭示了不同间隔岩层结构形态及演化条件。研究表明,随着上煤层采高增大,来压期间支架工作阻力及动载系数均呈正相关增长;下煤层采高与间隔岩层厚度之比越大,周期来压步距及支架最大工作阻力越大。层间仅存在单一关键层时,层间关键层周期破断可形成"砌体梁"和"台阶岩梁"两种结构;则当上煤层垮落顶板关键层重新形成"砌体梁"结构时,层间关键层与上煤层垮落顶板关键层可形成"砌体-砌体"和"台阶-砌体"2种组合结构形态。  相似文献   

3.
针对浅埋近距离多煤层中间厚关键层破断呈现的大小周期来压现象,以神东补连塔煤矿上煤层采空区下大采高工作面为背景,采用现场实测与理论分析等方法对多煤层工作面厚关键层破断特征及矿压显现规律进行了研究。结果表明:多煤层中间厚关键层在矿山压力和自身弱面结构影响下将以分层方式垮落;根据关键层判别方法、钻孔岩芯和工作面矿压显现综合判断,垮落位置位于该岩层中部,上位厚关键层顶板形成"砌体梁"结构,下位厚关键层顶板形成"悬臂梁"结构;"砌体梁"结构对工作面矿压影响减弱,"悬臂梁"结构成为支架作用力的主要力源;正常回采时影响支架稳定的最危险状态是悬臂梁与砌体梁组合同时破断,对工作面顶板管理带来一定的困难;厚关键层在特殊情况下会产生整层破断形成"台阶岩梁"结构,应提前采取应对措施。  相似文献   

4.
浅埋煤层覆岩关键层结构分类   总被引:45,自引:3,他引:42       下载免费PDF全文
以神东矿区浅埋煤层开采为工程背景,对浅埋煤层覆岩关键层结构的类型及其破断失稳特征进行了研究.结果表明,浅埋煤层覆岩关键层结构类型可分为单一关键层和多层关键层结构;单一关键层结构又分为厚硬单一关键层结构、复合单一关键层结构、上煤层已采单一关键层结构3种类型.单一关键层结构是导致浅埋煤层特殊采动损害现象的地质根源,浅埋煤层单一关键层结构采动破断运动不仅对工作面矿压产生影响,同时会影响顶板涌水溃沙和地表沉陷.关键层破断块体结构承担的载荷层厚度大而不能满足砌体梁结构不发生滑落失稳的条件,从而导致关键层破断块体滑落失稳,这是导致神东矿区浅埋煤层单一关键层结构工作面易出现台阶下沉和压架出水等采动损害问题的力学机理.确定了神东矿区浅埋煤层覆岩关键层结构类型的判别方法.  相似文献   

5.
现场勘查发现,神府矿区浅埋煤层群间隔岩层厚度大多在15~45 m时,间隔岩层易存在单一关键层结构。文章通过现场实测得出了浅埋煤层群开采周期来压的基本特征:来压步距减小、强度增大、煤壁片帮严重,动载现象、台阶下沉现象和大、小周期来压现象明显。物理相似模拟实验揭示了间隔岩层关键层与上煤层已扰动关键层同步与非同步破断的大、小周期来压机理,发现了间隔岩层关键层与已扰动关键层共同形成的"梁-拱-壳"结构形态,给出了上煤层已扰动关键层结构形态的判别方法,得出了浅埋煤层群开采顶板周期破断可形成"台阶-台阶"、"砌体-台阶"、"砌体-砌体"的基本结构。综合建立了浅埋煤层群开采间隔岩层周期破断结构与力学模型,给出了支架受动静载荷作用的工作阻力计算方法,并得到了现场验证。  相似文献   

6.
浅埋煤层采场老顶周期来压的结构分析   总被引:43,自引:4,他引:39  
黄庆亨  钱鸣高 《煤炭学报》1999,24(6):581-585
建立了浅埋煤层采场老顶周期来压的“短砌体梁”和“台阶岩梁”结构模型,分析了顶板结构的稳定性,揭示了工作面来压明显和顶板台阶下沉的机理是顶板结构滑落失稳,给出了维持顶板稳定的支护力计算公式,为浅埋煤层顶板控制定量化分析提供了理论基础。  相似文献   

7.
以陕北榆神矿区浅埋近距离煤层群下行开采为背景,通过物理模拟研究了下煤层工作面初次来压的顶板结构特征。近距离煤层下煤层开采时,间隔岩层顶板一般具有单一关键层,顶板初次破断形成"非对称三铰拱结构",结构上的载荷层为上煤层采空区垮落顶板。上煤层垮落顶板结构在下煤层采动后活化,与下煤层三铰拱结构共同形成"非对称三铰拱梁与拱壳载荷结构"。通过建立浅埋煤层群下煤层关键层固支梁力学模型,修正了基本顶极限垮距计算公式,确定了下煤层顶板结构块的参数。建立了煤层群下煤层开采初次来压的支架载荷计算模型,揭示了工作面顶板动压机理。基于动静载荷作用,提出了初次来压的合理支架工作阻力确定方法,为浅埋近距离煤层群开采的顶板初次来压控制提供了理论依据。  相似文献   

8.
为解决神东矿区7.0 m大采高综采工作面的安全高效开采问题,采用现场实测、理论分析和物理模拟的手段,对19个特大采高工作面的矿压规律和关键技术进行研究。研究结果表明:特大采高工作面矿压显现较普通采高工作面更加强烈;由于特大采高工作面采高明显增大,覆岩第一亚关键层易进入垮落带,难以形成"砌体梁"结构,而呈"悬臂梁"结构周期性破断,形成工作面的周期来压,其持续长度与支架控顶距接近,较关键层"砌体梁"结构来压持续长度明显偏大;并且随着埋深的增大,高位关键层的破断对特大采高工作面矿压显现的影响也逐渐加大,多关键层的同步破断显然会传递更大的覆岩载荷,进而加剧了工作面矿压显现。针对特大采高工作面的矿压显现特征与特殊的覆岩破断规律,建立了支架合理工作阻力的确定方法,研发了特大采高工作面开采设备,开发了大断面巷道支护技术、强制放顶技术和末采快速贯通技术,实现了特大采高工作面的安全高效开采。  相似文献   

9.
基于大柳塔煤矿52304工作面的矿压实测数据,分析了近浅埋煤层7 m特大采高工作面的矿压显现规律。工作面初次来压步距为73.3 m,周期来压步距平均为16.0 m。周期来压步距呈现"两端大、中间小"的特征,来压持续长度呈现"两端小、中间大"的特征。工作面来压时,中部矿压显现强烈,支架动载系数为1.58,支护阻力高达18 000 k N;而工作面两端支架受力较小,为12 000 k N。非来压时,工作面支架工作阻力一般为12 000 k N,分布较均匀。采用大采高"斜台阶岩梁"结构计算法和实测统计法,计算了合理的支架工作阻力,表明原工作面支架工作阻力偏低。实践表明,采用大采高"斜台阶岩梁"结构计算得出的合理支架工作阻力符合实际,为大采高工作面支架选型提供了依据。  相似文献   

10.
黄庆享  周金龙 《煤炭学报》2016,41(Z2):279-286
基于对榆神府矿区的大量实测分析,得出大采高工作面支架阻力随采高的增大呈现非线性增大,在采高增大到6 m后支架载荷迅速增大。支架动载系数随采高的变化不大,一般为1.4左右。工作面顶板来压步距随采高变化不大,初次来压步距35~70 m,周期来压步距9~20 m。顶板垮落带高度为采高的2~4倍,随采高的增大线性增大。工作面超前支承压力峰值随采高的增大略有降低,峰值位置与煤壁距离约为采高的2倍。根据现场实测和物理模拟分析,大采高工作面顶板形成"厚等效直接顶",使基本顶关键层铰接结构层位上移。根据直接顶充填条件,可分为充分充填型和一般充填型两类。针对常见的一般充填条件,提出了大采高工作面顶板的直接顶"短悬臂梁"结构和基本顶关键层"高位斜台阶岩梁"结构模型,给出了工作面额定支护阻力的计算公式,揭示了大采高工作面来压机理。最后,对理论计算公式进行了实例验证。  相似文献   

11.
特厚煤层综放开采大空间采场覆岩结构及作用机制   总被引:1,自引:0,他引:1       下载免费PDF全文
于斌  朱卫兵  高瑞  刘锦荣 《煤炭学报》2016,41(3):571-580
针对大同矿区石炭系3-5号特厚煤层坚硬顶板综放开采时工作面易出现压架、临空巷道超前区域变形、破坏严重等强矿压显现问题,采用理论分析、物理模拟及现场实测等方法,建立了特厚煤层开采大空间采场岩层结构演化模型。结果表明:特厚煤层综放开采覆岩远、近场关键层运动都可能会对采场矿压产生影响,近场关键层为“竖O-X”破断的“悬臂梁+砌体梁”结构,远场关键层为“横O-X”破断的“砌体梁”结构模型。近场关键层结构主要影响工作面支架压力及其稳定性,近场关键层结构中,以“悬臂梁”结构破断运动的关键层层数越多,对支架安全越不利;远场关键层结构则主要对工作面临空侧巷道变形产生影响,其破断块体的回转运动对临空侧巷道围岩产生径向挤压作用,是造成巷道超前底臌的主要原因。据此开发了基于地面钻孔压裂与井下顶板预裂相结合的远、近场协同弱化的坚硬顶板预控技术,将有效降低岩层破断的能量释放和关键层结构失稳的压力传递,减轻特厚煤层综放开采采场矿压的显现强度。  相似文献   

12.
大采高采场力学模型及支架工作状态研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以大采高岩层运动及应力分布规律为核心,运用“传递岩梁”理论对大采高综采工作面上覆岩体破断类型及其平衡结构进行分析,研究建立了大采高采场结构力学模型,探讨了大采高采场的覆岩结构及运动规律,详细分析了“给定变形”、“限定变形”两种力学状态下支架工作荷载即缩量确定方法,修正了大采高下直接顶及基本顶概念,确立了支架载荷的计算方法。研究表明:采高增大,直接顶厚度可能大幅度增加,直接顶中出现大跨度悬顶坚硬岩层的几率增大。影响采场矿压显现的“传递岩梁(基本顶)”范围相对减少,对采场矿压有明显影响的岩梁距采场的高度增大。准确地确定悬顶位置、厚度及可能的最大悬跨度是大采高采场顶板控制设计及支架选型计算的关键。  相似文献   

13.
梁运培  李波  袁永  邹全乐  贾路行 《煤炭学报》2017,42(6):1380-1391
掌握大采高综采采场关键层结构形态及运动型式是分析工作面矿压显现规律的基础。采用理论分析方法,得出了大采高综采采场关键层存在2种结构形态和6种运动型式,并给出了各结构形态和运动型式的形成条件,2种结构形态为垮落带关键层"悬臂梁"结构形态和断裂带关键层稳定"铰接"结构形态,6种运动型式为"悬臂梁"直接垮落式、"悬臂梁"双向回转垮落式、"悬臂梁"二次回转垮落式、"悬臂梁-铰接"结构交替式、"砌体梁"结构运动型式和"短砌体梁"结构运动型式。采用UDEC数值模拟方法验证了各形成条件下的关键层的运动型式,揭示了6种关键层运动型式对采场矿压的影响规律,最后得到了现场实测数据的验证。  相似文献   

14.
庞义辉  王国法 《煤炭学报》2017,42(10):2518-2527
针对大采高工作面动载矿压显现、煤壁易片帮等问题,基于红柳林煤矿7.0 m大采高开采实践,建立了大采高工作面顶板岩层断裂的"悬臂梁+砌体梁"结构模型及支架与围岩的简化动力学模型,确定了7.0 m大采高液压支架合理工作阻力;对比分析了大采高液压支架架型、护帮结构对围岩的适应性,进行了大采高液压支架结构优化设计及适应性分析。研究结果表明:将大采高工作面"砌体梁"结构上方岩层作为动力学模型的边界条件,以支架立柱的抗冲击特性要求为理论判据,通过动力学仿真计算可得大采高支架的合理工作阻力。两柱掩护式大采高支架较四柱支撑掩护式支架具有支护强度大、四连杆稳定机构受力状态好、质量轻等优点;护帮板与伸缩梁分体结构的护帮力、合力作用位置及可靠性均优于护帮板与伸缩梁连体结构;设计采用抗冲击双伸缩立柱、高压升柱系统等,提高了大采高液压支架对围岩的适应性。  相似文献   

15.
浅埋煤层长壁工作面矿压规律及关键块失稳分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 为研究浅埋煤层长壁工作面的矿压规律和顶板结构稳定性,以榆阳煤矿1307长壁工作面为工程背景,设计了矿山压力观测方案并进行了现场观测。总结分析了浅埋煤层长壁开采时矿压显现规律和浅埋煤层上覆岩层破坏规律,得出初次来压步距为78m,二次来压是在工作面推进至93米,工作面周期来压步距范围在6.4~8.1m;通过对关键块的失稳分析,得出最大开采高度应小于2.31m,关键块不发生滑落失稳的系数要求大于等于1,而实际计算的系数仅为0.4,在实际开采过程中工作面中后部采空区顶板每隔一段时间会发生突然垮落,造成倒架、折梁断柱等现象,为同类浅埋煤层的开采提供一些借鉴和参考。  相似文献   

16.
大倾角大采高综采面倾向长度尺度效应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以大倾角大采高综采为背景,通过理论分析、相似模拟和现场实测,对大倾角大采高综采基于工作面倾向长度尺寸效应导致的围岩灾变机理进行了分析,研究认为大倾角煤层直接顶和基本顶运动的不协调性使得控顶难度加大,工作面直接顶沿倾向可分为充填稳定段、易溃屈段和滑移段结构,相应矿压显现特征则呈现典型的“弱-强-弱”分布,即溃屈段为矿压显现最强烈区域,也是影响矿压显现的主控因素,对于特定赋存条件大倾角煤层,其工作面长度存在“临界尺寸”,工作面支护强度的确定除满足直接顶岩层岩法向方向的自重和部分基本顶载荷外,还需满足上部直接顶滑移产生的附加载荷,其中阻止溃屈段顶板的离层是支护强度确定的主要依据。  相似文献   

17.
7.0m支架综采面矿压显现规律研究   总被引:3,自引:0,他引:3  
基于神东矿区补连塔煤矿22303工作面矿压实测结果,对世界首个7.0 m支架综采面不同开采阶段的矿压显现规律进行了总结,并结合神东矿区各类大采高综采面的矿压显现,对比分析了不同采高综采面矿压显现规律的差异。结果表明:上覆遗留煤柱区下开采时7.0 m支架工作面矿压显现正常,但在临近推出煤柱区时,工作面内煤壁片帮现象严重,直接导致刮板板输送机被压死。而长壁采空区下开采时,7.0 m支架工作面在煤层间单一关键层结构和2层关键层结构区域呈现出不同的矿压显现。煤层间单一关键层结构区域,关键层距离煤层越近,矿压显现各项参数(除来压步距外)越大;而在煤层间2层关键层结构区域,工作面来压步距及动载系数呈现出大小交替的周期性变化规律,且大来压步距对应小动载系数。通过对比7.0 m支架综采面与神东矿区其它几个大采高综采面的矿压显现规律发现,随着采高的增加,支架支护强度缓慢增加,而动载系数随之减小,且采高越大、亚关键层1距离煤层越近,越易形成亚关键层1的"悬臂梁"结构,从而来压持续长度越长。  相似文献   

18.
基于榆神矿区特厚坚硬煤层超大采高综放开采技术条件,针对散体颗粒模型在埋深较浅的坚硬煤层综放开采模拟中顶煤冒放情况与实际不相符的问题,对比黏结颗粒模型与无黏结散体颗粒模型力学性质,讨论两种模型适用条件,得出黏结颗粒模型更适合坚硬煤层综放开采模拟。阐述了黏结颗粒模型的建模和模拟过程:岩层内部采用平行黏结颗粒模型以模拟层内整体块体力学特性,层间采用光滑节理模型以模拟结构面力学性质;通过Fish语言和伺服控制原理实现液压支架初撑阶段、增阻阶段和恒阻阶段不同工况的模拟;根据支架顶梁位态采用逆向运动学方法更新支架整体位姿;通过Fish语言实现尾梁的不同幅度摆动。数值模拟结果表明:覆岩可形成下位基本顶不稳定砌体梁结构和上位基本顶稳定砌体梁结构,顶板来压步距介于10~20 m;顶煤破碎度和冒放性具有双周期性(走向周期与周期来压步距一致,表现为来压期间顶煤破碎较充分、冒放性好,优于非来压期间;垂向周期与顶煤层位相关,表现为下位顶煤破碎充分、冒放性好,优于上位顶煤);工作面煤壁整体稳定性较好,来压期间会出现煤壁破坏现象;液压支架总体处于较高的工作阻力状态;不同块度的顶煤冒放过程中可能形成小块度瞬时动态松散拱结构、中等块度不稳定拱结构和大块度稳定拱结构,尾梁成拱可采用“小拱小摆、大拱大摆”对策高效破拱,掩护梁成拱则需移架才可破拱。超大采高综放开采实践表明数值模拟结果与现场情况一致,黏结颗粒模型能较好地模拟埋深较浅的坚硬煤层综放开采顶煤冒放特征和矿压显现规律。本研究可为坚硬煤层顶煤冒放性和顶板覆岩结构数值模拟研究提供力学模型选择依据,为模拟过程实现方法提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号