首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
浮选矿浆中离子的种类与浓度直接影响着矿物颗粒和气泡的表面电位,进而支配着浮选矿化过程。从热力学和动力学两个方面入手,通过DLVO理论探究了不同电解质对煤粒和油泡间的相互作用势能的影响,结合其在不同电解质条件下诱导时间的差异,最终通过相应条件下的油泡浮选试验来证实电解质对低阶煤-油泡浮选矿化黏附过程的影响。结果表明:对于NaCl和CaCl_2两种电解质,随其浓度的增大,煤粒和油泡表面电位的负值均不断减小,煤粒和油泡间的能垒也不断降低,当CaCl_2浓度为100 mmol/L时,煤粒和油泡间的相互作用不存在能垒;并且随这两种电解质浓度的增大,黏附过程的诱导时间逐渐减小,相应地可燃体回收率不断提高,且相同的电解质浓度下,CaCl_2电解质对其相互作用能垒和诱导时间的降低程度更大,可燃体回收率更高。而对于AlCl_3电解质,当其浓度大于20 mmol/L时且随浓度的增大,煤粒和油泡间的相互作用能垒和诱导时间不断增大,相应地可燃体回收率则不断降低。  相似文献   

2.
周芳  池汝安 《金属矿山》2018,47(4):27-34
浮选是高效回收矿产资源应用最广泛的技术方法。气泡作为浮选载体在浮选过程中有着举足轻重的作用。以气泡-油泡-活性油质气泡为线索,对比了传统气泡与改性后油泡(气泡表层包裹一薄层油性捕收剂)、活性油质气泡(气泡表层包裹一薄层含有捕收剂的中性油)的浮选特性。通过浮选动力学分析了气泡与油泡、活性油质气泡浮选的区别,传统气泡浮选与改性后的油泡浮选均为2步反应,而活性油质气泡实现了1步浮选,大大降低了气泡与矿物颗粒间的黏附功,提高了浮选效率。从油-水界面表面活性剂解离度这个角度分析了活性油质气泡的表面性质,指出活性油质气泡的表面电性由表层中性油中添加的捕收剂和p H决定。通过DLVO理论计算了不同气泡与矿物颗粒间的相互作用能,从理论上解释了活性油质气泡浮选指标更好的原因。活性油质气泡在选矿中的成功应用表明,活性油质气泡与矿物表面的作用均强于传统气泡与矿物表面的作用,即活性油质气泡对矿物具有更强的捕收能力,相较于气泡和油泡的浮选,活性油质气泡浮选有利于提高浮选效率,降低捕收剂用量。活性油质气泡作为浮选载体从气泡这一特殊视觉为浮选行业开辟了一个崭新的研究领域。  相似文献   

3.
浮选实验表明油泡对低阶煤颗粒的捕收能力要远强于传统浮选过程的起泡。这主要是由于油泡表面被捕收剂覆盖,其表面疏水性要远高于气泡表面的疏水性。因此,在油泡浮选矿化过程中,低阶煤颗粒-油泡间水化膜的薄化速度要远快于煤颗粒-气泡间的薄化速度。诱导时间测试发现,随着DAH溶液浓度从10~(-7) mol/L增加到5×10~(-5) mol/L时,低阶煤颗粒-气泡间的诱导时间从93 ms下降到12 ms。随着DAH溶液浓度从5×10~(-5) mol/L增加到10~(-3) mol/L时,低阶煤颗粒-气泡间的诱导时间从12 ms增加到35 ms。当DAH浓度由10~(-7) mol/L(纯去离子水溶液)增加到5×10~(-5) mol/L,低阶煤颗粒-油泡间的诱导时间由35 ms降低到10 ms。随着DAH浓度的进一步增加到10~(-3) mol/L时,低阶煤颗粒-油泡间的诱导时间由10 ms增加到25 ms。为了从微观尺度下去表征油泡表面较气泡表面所具有的强疏水性,本文通过低阶煤颗粒-油/气泡间的诱导时间,利用non-DLVO理论及Stefan-Reynolds水化膜薄化模型,拟合出初始水化膜厚度h与疏水性常数K_(132)之间的关系,进而得到了低阶煤颗粒-油/气泡间的疏水力常数K_(132)与十二烷胺盐酸盐DAH溶液浓度的关系。疏水力常数K_(132)拟合结果表明,当DAH溶液的浓度为5×10~(-5) mol/L时,低阶煤颗粒-油泡间的疏水力常数K_(132)约为低阶煤颗粒-气泡间的疏水力常数K_(132)的3倍;当DAH溶液的浓度为10~(-6) mol/L时,前者是后者的15倍。因此,油泡表面较气泡具有更强的疏水性质。从而解释了低阶煤-油泡浮选矿化过程优于传统浮选过程的本质特征。  相似文献   

4.
为表征低阶煤颗粒-气/油泡间矿化过程的差异,通过Sutherland理论下固体颗粒进入泡沫产品的总概率(E)和浮选速率常数(k)之间关系,并结合低阶煤颗粒-气/油泡的浮选速率试验,求得了低阶煤颗粒-气/油泡间的诱导时间。浮选实验研究表明,在相同的捕收剂消耗量下低阶煤-油泡浮选产率均高于低阶煤-气泡浮选产率。诱导时间测试表明,低阶煤颗粒-油泡间的诱导时间(35 ms)要明显低于低阶煤颗粒-气泡间的诱导时间(93 ms)。上述实验结果表明,油泡表面的疏水性要强于传统浮选气泡表面的疏水性。然而,进一步利用Sutherland理论中固体颗粒进入泡沫产品的总概率和浮选速率常数之间的数学关系,并结合低阶煤颗粒-气/油泡的浮选速率试验求得的低阶煤颗粒-气/油泡间的诱导时间分别为9.67和8.46 ms,其与诱导时间测试仪分别测量的诱导时间差异很大。这主要是由于在实际浮选过程中气/油泡的上升速度分别为23.26和22.68 cm/s,其远高于2015EZ型诱导时间仪测试过程中气/油泡碰撞速度(2.0 cm/s)。因此,诱导时间理论计算表明气泡-颗粒间的碰撞速度对颗粒-气泡间的诱导时间影响很大。上述研究结果表明油泡浮选效果优于传统浮选的内在原因在于低阶煤颗粒-油泡间的诱导时间小于低阶煤颗粒-气泡间的诱导时间。  相似文献   

5.
《煤炭技术》2016,(7):319-321
诱导时间是煤炭浮选矿化过程中的重要参数。以神东低阶煤为研究对象,采用单因素实验方法分别探究了气泡压缩形变量Δh、接触速度u_j以及气泡直径d_b对煤样诱导时间的影响,并比较研究了普通油泡和活性油泡对气泡-煤粒粘附的强化作用。  相似文献   

6.
针对低阶煤表面亲水性强、可浮性差及浮选过程中捕收剂消耗量高等问题,国内外研究者研究了低阶煤的汕泡浮选。本文对低阶煤-油泡浮选试验、矿化理论及分选装置进行了归纳总结。低阶煤的油泡浮选试验表明,油泡表面的强疏水性可以提高低阶煤浮选回收率,降低捕收剂消耗量。诱导时间测试结果表明,低阶煤颗粒-油泡间的诱导时间要远短于低阶煤颗粒-气泡间的诱导时间。目前研究颗粒-气/油泡间水化膜薄化理论的模型主要有Stefan-Reynolds模型、Taylor方程、Stokes-Reynolds-Young-Laplace模型以及Stokes-Reynolds模型。油泡的制备方法主要有高温气化法和常温零调浆法。  相似文献   

7.
活性油泡浮选基础研究   总被引:1,自引:0,他引:1  
提出了应用活性油泡(即被含有捕收剂的油薄层所复盖的气泡)作为浮选载体的新概念。油膜除了使细颗粒团絮作用外,向油相中添加可溶于水的掳收剂可以很好地控制被薄的油膜复盖的气泡的表面性质,以便获得所需求的选择性。油泡在矿物表面上的接触角比气泡在矿物表面上的接触角大得多,这样可以保证对细颗粒和粗颗粒具有较强的捕收能力。活性油泡可使进入水相中的捕收剂量最小,防止矿浆中存在的捕收剂、活化剂、抑制剂和分散剂之间的不希望的协同作用,因而使脉石矿物活化程度最小,大幅度降低捕收剂所需要的量。测定了水溶液中煤油滴的Zeta电位与pH的关系。结果表明,可以通过控制捕收剂的种类来使油滴的表面电荷和表面性质适于浮选需要。用接触角测定法研究了含有捕收剂的油泡在二氧化硅、闪锌矿和方铅矿表面上的固着。用微浮选试验证实了在优先浮选中应用活性油泡的可能性。  相似文献   

8.
细粒浮选是一直以来困扰选矿工作者的一大难题,其研究热度与日俱增。针对典型的细粒氧化矿单 矿物锡石、黑钨、白钨、石英,采用微纳米气泡浮选法,拟通过引入微纳米气泡及控制固气界面性质强化细粒矿物的 浮选效果,找出气泡性质与细粒矿物浮选行为间的联系,并探讨其机理。结果表明,经微纳米气泡溶液预处理的细 粒矿物浮选回收率提高明显,四种矿物的回收率均有不同程度的提高(5~15 个百分点);同时,相比传统浮选,适当 降低微纳米气泡浮选的捕收剂浓度也能获得相近甚至更好的回收效果。沉降试验表明微纳米气泡可使细粒矿物 发生团聚,体积增大,导致颗粒与气泡的碰撞概率提高。接触角及诱导时间测试结果表明微纳米气泡可增大矿物 表面的润湿性,经微纳米气泡溶液处理后的矿物表面接触角明显增大,且气泡与矿物的黏附成功概率也更高。这 一结果对通过控制微纳米气泡行为、强化细粒矿物浮选效果、降低药剂用量具有重要意义。  相似文献   

9.
细粒浮选是一直以来困扰选矿工作者的一大难题,其研究热度与日俱增。针对典型的细粒氧化矿单 矿物锡石、黑钨、白钨、石英,采用微纳米气泡浮选法,拟通过引入微纳米气泡及控制固气界面性质强化细粒矿物的 浮选效果,找出气泡性质与细粒矿物浮选行为间的联系,并探讨其机理。结果表明,经微纳米气泡溶液预处理的细 粒矿物浮选回收率提高明显,四种矿物的回收率均有不同程度的提高(5~15 个百分点);同时,相比传统浮选,适当 降低微纳米气泡浮选的捕收剂浓度也能获得相近甚至更好的回收效果。沉降试验表明微纳米气泡可使细粒矿物 发生团聚,体积增大,导致颗粒与气泡的碰撞概率提高。接触角及诱导时间测试结果表明微纳米气泡可增大矿物 表面的润湿性,经微纳米气泡溶液处理后的矿物表面接触角明显增大,且气泡与矿物的黏附成功概率也更高。这 一结果对通过控制微纳米气泡行为、强化细粒矿物浮选效果、降低药剂用量具有重要意义。  相似文献   

10.
颗粒气泡黏附指从颗粒与气泡相遇开始到液膜发生薄化破裂最后至三相润湿周边铺展形成稳定矿化气絮体的过程,是浮选中的核心作用单元。然而浮选颗粒气泡黏附机理至今仍不明确。黏附过程主要受颗粒气泡的表面物理化学性质及溶液化学条件影响,表面力及流体作用力协同支配微纳尺度下颗粒气泡间液膜薄化破裂行为。排液过程中气液界面的变形效应进一步增加了系统复杂性,上述因素使得颗粒气泡黏附的理论研究及试验探索步履维艰。早期关于颗粒气泡黏附的研究主要聚焦于黏附概率,其中宏观尺度下的诱导时间测试占据主导地位,通过诱导时间结果计算黏附概率。对国内外宏观尺度下颗粒气泡黏附概率模型及研究技术手段进展展开全面综述,并对现有技术瓶颈及局限进行分析。诱导时间测量仪及高速动态摄影技术大大促进了浮选工作者对颗粒气泡黏附的理解,“诱导时间与实际浮选回收率具有着良好的相关关系”也已经被广泛证明。然而因微纳尺度下的表面力及液膜薄化动力学信息的缺失导致宏观诱导时间并不能从基础层面揭示颗粒气泡的黏附机理,微纳尺度下颗粒气泡间相互作用力及液膜薄化动力学的定量测试表征是技术发展的必然趋势,其可为浮选微观矿化反应过程提供新的理论视角,同时也为难浮煤及难选矿浮选过程强化提供理论支撑。  相似文献   

11.
Reactive oily bubble, defined as air bubbles covered with a thin layer of kerosene containing collectors, was used to float a major rare earth mineral, bastnaesite from rare earth ores. Both fatty acid and hydroxamic acid were used to generate reactive oily bubbles. The flotation of bastnaesite with reactive oily bubble was investigated by zeta potential, zeta potential distribution and induction time measurement and micro-flotation tests. The results showed a quicker attachment to bastnaesite and a stronger collecting power of reactive oily bubbles containing 100 ppm fatty acid than conventional air bubbles, resulting in an enhanced bastnaesite recovery. The flotation recovery of bastnaesite by reactive oily bubbles containing hydroxamic acid is lower than that by conventional air bubble flotation where the bastnaesite was pre-conditioned by hydroxamic acid in aqueous phase. During induction time measurement, no attachment is observed between bastnaesite particles and reactive oily bubbles containing hydroxamic acid, illustrating the importance of collector type in reactive oily bubble flotation technology. These findings suggest the superior performance of reactive oily bubble technique than conventional bastnaesite flotation method only when proper collector is used to generate the reactive oily bubbles.  相似文献   

12.
《Minerals Engineering》2002,15(9):667-676
A novel concept of reactive oily bubbles (i.e., bubbles covered by a thin layer of oil containing oil-soluble collectors) as a carrier in flotation is proposed. In addition to the role of fine particle agglomeration by oily films, the surface properties of air bubbles coated with a thin oil film can be better controlled for the desired selectivity by adding certain types and concentrations of water insoluble collectors into the oil phase. Oily bubbles attain a much higher contact angle than air bubbles, ensuring a strong collecting power, favorably for floating both coarse and fine particles. The reactive oily bubble flotation can eliminate the addition of collector to the aqueous phase, avoid undesired synergetic interactions among collectors, activators, depressants and dispersants present in slurry, minimize undesired activation of gangue particles and significantly reduce the amount of collectors needed.The electrokinetics of kerosene droplets in aqueous collector solutions was measured as a function of solution pH. The results clearly showed that the surface charge and hence the surface properties of oil droplets can be finely tuned by controlling the type of the collectors to suit the desired flotation needs. The attachment of collector-containing oily bubbles on silica, sphalerite and galena surfaces was investigated with contact angle measurement. The concept of using reactive oily bubble to achieve selective flotation was demonstrated in microflotation tests.  相似文献   

13.
《Minerals Engineering》2006,19(6-8):641-650
A recognized challenge in bitumen extraction is the reduced bitumen recovery when processing high-fine ores or “weathered” oil sand ores, collectively called poor processing ores. Preliminary lab tests demonstrated that bitumen flotation recovery from these ores could be greatly enhanced by using oily bubbles (air bubbles coated with a thin layer of oil or solvent) instead of air bubbles. In this study, dynamic contact angle of air/oily bubbles on bitumen surface and induction time of bitumen–air/oily bubble attachment in aqueous solution were measured to investigate the mechanisms of how oily bubbles help improve bitumen recovery and to justify the use of oily bubbles while processing poor oil sand ores. Oily bubbles showed a marginal effect on the contact angle values compared to air bubbles. However, the spreading of oily bubbles on a bitumen surface was found to be much faster than that of air bubbles. The induction time for bubble–bitumen attachment in the process water from poor processing ores was found to be much shorter for oily bubbles than for air bubbles. The reduced induction time for kerosene-coated air bubble–bitumen attachment correlates well with the improved bitumen recovery from poor processing ores using kerosene-coated oily bubble flotation technology.  相似文献   

14.
为了提高低阶煤的疏水性和可浮性,实现低阶煤的高效浮选提质,本研究用3种不同类别的表面活性剂(CTAB、SDS和Span-80)对平朔长焰煤和胜利褐煤煤样进行改性处理,采用离子交换法测定改性前后煤样中含氧官能团的含量,测定了各煤样在气泡上的吸附概率,并对表面活性剂改性低阶煤的规律和机理进行了分析,认为含氧官能团含量是影响煤的疏水性和可浮性的重要因素,通过表面活性剂改性可以对低阶煤表面的含氧官能团产生有效的掩蔽作用,提高低阶煤的疏水性,促进其在气泡上的吸附;氢键对表面活性剂在低阶煤表面的吸附起最主要的作用,表面活性剂极性端官能团的种类及其与煤中含氧官能团之间的氢键作用强弱对表面活性剂的改性效果起决定性作用。  相似文献   

15.
表面活性剂在煤泥浮选领域中应用广泛,且表面活性剂常被用于煤泥浮选促进剂,本文从另一个方面探究了表面活性剂在过量的情况下对煤泥浮选的抑制效应及其机理。以低灰煤粒和表面活性剂曲拉通X-100为研究对象,采用X射线光电子能谱(XPS)表征曲拉通X-100在煤表面的吸附状态,静态接触角测定仪测定曲拉通X-100对煤表面疏水性的影响,并探究了不同质量浓度曲拉通X-100液滴在煤粒表面的润湿与铺展情况,采用诱导时间测量仪分析不同质量浓度曲拉通X-100水溶液中的气泡与煤粒的黏附情况,最后通过紫外分光光度计定量表征浮选槽中残留曲拉通X-100质量浓度与不同浮选时间下浮选结果的对应关系。结果表明:高质量浓度曲拉通X-100会抑制煤粒上浮,随着浮选试验的进行,曲拉通X-100质量浓度逐渐降低,低质量浓度曲拉通X-100会促进煤粒被上浮气泡黏附而浮出;高质量浓度曲拉通X-100能够在煤粒表面发生有效吸附,该吸附属于物理吸附,且在一定程度上提高了煤表面的疏水性;高质量浓度曲拉通X-100水溶液更容易润湿煤表面,从而减缓了气泡-煤粒黏附过程中的液膜薄化与破裂速率;在高质量浓度曲拉通X-100水溶液中,气泡表面因罩盖有曲拉通X-100分子,导致气泡表面发生改性,难以与煤粒发生有效黏附。高质量浓度曲拉通X-100主要通过对气泡改性,以及减缓气泡与煤粒碰撞-黏附过程中的液膜薄化-破裂速率来抑制煤粒的浮选。  相似文献   

16.
煤颗粒与气泡黏附行为的试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
卓启明  刘文礼  刘伟  开佩 《煤炭学报》2018,43(7):2029-2035
浮选微观模型认为,颗粒与气泡的黏附是实现浮选的关键步骤,对颗粒与气泡黏附规律的直接研究非常重要。采用自行设计搭建的颗粒与气泡碰撞、黏附行为测量装置,以内蒙古公乌素原煤为试验对象,直接观测了不同密度级的0.1~0.15 mm粒级煤样的黏附行为,并采用自行开发的多目标追踪软件进行分析。结果表明:煤颗粒在与气泡碰撞前会发生绕流,速度大小和方向均会改变,当煤颗粒与气泡碰撞时,煤颗粒的速度降为最低。煤颗粒在气泡表面的滑动速度先是逐渐增大,在气泡"赤道"位置处达到最大值,越过"赤道"后,煤颗粒的滑动速度逐渐减小,并最终黏附在气泡底部。煤颗粒与气泡的黏附效率随碰撞角的增大而降低,在碰撞角相同时,随煤样密度级的增大,黏附效率降低,临界黏附角减小。随煤颗粒沉降末速的增大,煤颗粒与气泡的黏附效率降低,临界黏附角减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号