首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
在Gleeble-1500热模拟机上对AM60镁合金在应变速率为0.0005—0.5s^-1、变形温度为250~450℃条件下的流变应力行为进行了研究。结果表明:AM60镁合金热压缩变形的流变应力受到变形温度和应变速率的强烈影响,可以用Zener-Hollmon。参数的双曲正弦函数形式进行描述。在本实验条件下,AM60镁合金热压缩变形时的应力指数n为7.2,其热变形激活能Q为190kJ/mol.  相似文献   

2.
在Gleeble 1500D型热模拟试验机上,在应变速率为0.01~1s-1、变形温度为573~723K条件下,对AZ31合金的流变应力行为进行了研究.结果表明:AZ31镁合金在热压缩变形时,当应变速率一定时,流变应力随着变形温度的升高而减小;而当变形温度一定时,流变应力随着应变速率的增大而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下AZ31镁合金热变形应力指数n=8.34,其热变形激活能Q=196kJ/mol.  相似文献   

3.
采用多功能相变仪对一种新型医用β型Ti-Nb-Ta-Mo-Zr合金在变形温度900~1 000℃、应变速率10~(-2)~1 s~(-1)、变形量60%的高温塑性变形行为进行研究,得出合金在高温下流变应力随变形温度、变形速率变化的变化规律。基于Zener-Hollomon参数建立了Ti-Nb-Ta-Mo-Zr合金的流变应力双曲线正弦本构方程,得出合金的真应力-真应变曲线图,并建立以动态材料为基础的热加工图。结果表明,应变温度的升高和应变速率的降低都会使合金的流动应力降低,合金流变应力曲线还具有应力峰值和流变软化特征。同时,试验得出合金在高温变形时的加工硬化指数和热变形激活能等常数。  相似文献   

4.
以固溶+自然时效态7A55铝合金为研究对象,利用热模拟试验机研究该合金在近生产条件(温度370~450℃,应变速率0.01~10 s^-1)下的流变应力行为。基于得到的流变应力数据,构建了本构方程和热加工图,并通过微观组织对热加工图进行了验证。结果表明,经自然时效预处理后的7A55铝合金在高温变形时呈现明显软化现象,流变应力随温度的增加和应变速率的降低而逐渐下降。通过计算得到热激活能为138.71 kJ/mol,最佳热变形参数为410~450℃、0.01~0.1 s^-1。7A55铝合金在热变形时存在亚动态再结晶现象。  相似文献   

5.
在Gleeble-1500热模拟试验机上,采用高温等温压缩试验,研究了5A30铝合金在300~500℃温度范围及应变速率在0.001~1s-1内压缩变形的流变应力变化规律,采用数学回归及最小偏差法求出了该合金的材料常数,建立了该合金流变应力与Zener-Hollomon参数的线性关系式.结果表明,该合金为正应变速率敏感材料,流变应力随变形温度升高而降低,随应变速率升高而增大;该合金的材料常数包括变形激活能Q为160.94kJ/mol,应力水平参数α为0.0184mm2/N,应力指数n为3.314,结构因子A为3.058×109s-1;合金流变应力模型可表达为σ=54.31ln{(Z/3.058×109)1/3.314+[(Z/3.058×109)2/3.314+1]1/2}.  相似文献   

6.
在Gleeble-1500热模拟试验机上,采用高温等温压缩法,研究了7075铝合金在250~450℃温度范围及1.0~0.001 s-1应变速率范围内压缩变形时流变应力的变化规律.结果表明,应变速率和变形温度对合金流变应力的影响很大,流变应力随应变速率的提高而增大,随变形温度的提高而降低;其流变应力值可用Zener-Hollomon参数来描述.从流变应力、应变速率和温度的相关性,得出了该合金高温变形的应力指数n,应力水平参数α,结构因子A和变形激活能Q.  相似文献   

7.
Mg-8Gd-3Y-0.5Zr耐热镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
对Mg-8Gd.3Y-0;5Zr(质量分数,%)稀土镁合金在温度为250~450℃、应变速率为0.001-0.1 s-1、最大变形程度为50%的条件下,进行了恒应变速率高温压缩模拟实验研究,分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化,计算了塑性变形表观激活能及相应的应力指数,结果表明:合金的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低;在给定的变形条件下,计算得出的塑性变形表观激活能和应力指数分别为220kJ/mol和5.6.根据实验分析,合金的热加工宜在350℃左右进行.  相似文献   

8.
对快速凝固粉末冶金制备的挤压AZ91镁合金,在温度为250—400 ℃、应变速率范围为0.01—1 s-1下进行了热压缩变形试验。同时,利用热加工图分析评价了合金的热加工特性。结果表明:合金的流变应力,随变形温度的升高或应变速率的减小而减小;同时,基于双曲正弦关系建立了描述流变应力行为的本构方程,RS/PM制备的AZ91挤压合金的热变形机制为晶格扩散控制的位错蠕变;通过微观组织验证了动态再结晶和流变失稳行为,当温度高于350 ℃、应变速率在0.01—0.1 s-1时,合金的可加工性最佳。  相似文献   

9.
7075铝合金高温等温变形的流变应力特征   总被引:4,自引:0,他引:4  
在Gleeble—1500热模拟试验机上.采用高温等温压缩法,研究了7075铝合金在250-450℃温度范围及1.0~0.001s^-1应变速率范围内压缩变形时流变应力的变化规律.结果表明。应变速率和变形温度对合金流变应力的影响很大,流变应力随应变速率的提高而增大,随变形温度的提高而降低;其流变应力值可用Zener-Hollomon参数来描述.从流变应力、应变速率和温度的相关性,得出了该合金高温变形的应力指数n,应力水平参数α,结构因子A和变形激活能Q。  相似文献   

10.
采用Gleeble热模拟实验机,在变形温度为950~1100℃、应变速率为0.001~1 s^(-1)条件下进行了热压缩实验,通过对流变应力曲线的分析,建立了Arrhenius本构方程,并对该方程进行了修订,获得了包含变形温度、应变速率及应变量相关的Arrhenius应变补偿本构方程。采用对比及平均误差分析检验本构方程的有效性和精确性发现:修正后的本构方程计算得到的应力值和实验数据吻合较好,方程的相关系数r值为0.967、平均相对误差AARE值仅为7.35%,具有较高的准确性。此外,基于Zener-Hollomon参数建立了Haynes 242合金动态再结晶的临界应变模型,并通过对能耗图和失稳图的绘制获得Haynes 242合金的热加工图,定量揭示了变形工艺参数在变形过程中对组织演化的影响,获得了最优的热加工工艺参数。  相似文献   

11.
通过2618铝合金的等温压缩试验,分析了变形温度、应变速率对变形抗力及组织的影响,并由此得出了2618铝合金在等温变形中变形温度和应变速率的最佳范围,为该工艺的等温变形工艺制定提供了理论依据。  相似文献   

12.
基于导向臂用52CrMoV4弹簧钢的热轧及热压变形工艺研究,采用Gleeble-3500型热模拟试验机,在变形温度(1173-1373 K)和应变速率(0.01-10 s-1)下对52CrMoV4弹簧钢进行等温热压缩实验。基于实验所得真应力-真应变曲线,分析了热变形参数与流变应力之间的关系,建立了修正的Johnson-Cook本构模型和基于应变补偿的Arrhenius本构模型,并对两种本构模型的准确性和有效性进行了比较。结果表明,52CrMOV4弹簧钢的流变应力随着温度的升高和应变速率的降低而降低。通过精度分析可知,修正Johnson-Cook模型的相关系数为0.98955,平均绝对相对误差为5.4625%,均方根误差为6.87029 MPa,计算较为简单却具有较高的准确性。而应变补偿的Arrhenius模型的相关系数为0.99023,平均绝对相对误差为4.4319%,均方根误差为6.22664 MPa,其精度较修正Johnson-Cook模型更高,可以更好地预测52CrMoV4弹簧钢的流变应力行为并作为热变形工艺及有限元模拟参数选择的依据。  相似文献   

13.
花岗岩冲击力学特性及损伤演化模型   总被引:1,自引:0,他引:1       下载免费PDF全文
吴帅峰  张青成  李胜林  陈斌  刘殿书 《煤炭学报》2016,41(11):2756-2763
使用分离式霍普金森压杆(SHPB)对花岗岩进行不同应力波波长(0.8~2.0 m)和不同应变率(20~120 s-1)组合下的冲击试验,对其动态力学特性和损伤演化规律进行了研究。试验得出:花岗岩的动态抗压强度与应变率呈线性正相关,动态抗压强度因子与应变率的自然对数呈线性正相关;峰值应变与应变率呈线性正相关,且波长的增加使峰值应变水平整体抬升。通过多次冲击试验得出:在同一波长下,花岗岩的累积损伤随着应变率的增长呈指数型递增形式;当保持应变率范围不变的情况下,增大应力波波长,花岗岩的损伤累积效应加剧,依然呈指数型递增形式;在多次冲击作用下,花岗岩损伤整体发展趋势相似,但增长速率加快;并由此建立以指数函数为基础的损伤演化模型,确定出模型中参数物理意义,该模型能够同时能反映应力波参数和冲击次数影响。通过验证表明模型的合理性及参数物理意义的正确性。  相似文献   

14.
本文以挤压态Mg-9Li-1Zn镁锂合金为材料在Gleeble3500热模拟实验机上做热压缩变形实验,变形温度范围为150℃-350℃,应变速率范围为0.001s-1-10s-1。基于所采集实验数据绘制流变应力应变曲线,建立了双曲线正弦函数的本构方程及真应变为0.916时热加工图,结合变形后微观组织观测分析了动态再结晶的产生情况,表明了适宜加工的安全区域和在加工中应该避免的失稳区域,预测温度范围为250-300℃,应变速率0.01s-1时为较理想的变形参数,峰值耗散系数值大于38.55%,热变形激活能Q=112.066kJ/mol,应力指数n=3.60273。  相似文献   

15.
白云岩三维动静组合加载力学特性试验研究   总被引:5,自引:0,他引:5  
周宗红  章雅琦  杨安国  王春 《煤炭学报》2015,40(5):1030-1036
为研究白云岩的力学特性和破坏模式,利用改进的三维SHPB动静组合加载试验装置,对白云岩进行三维加载、轴向冲击试验,分析轴压、围压和应变率对白云岩强度、变形模量、能量吸收等的影响,探讨岩石动静组合加载的应变率效应。试验结果表明:当围压一定时,白云岩的抗压强度随着轴压的增大呈现出先增大后减小的趋势,变形模量随着轴压的增大而减小;白云岩单位体积吸收能会随着轴压的增大而先增加后降低。轴压固定时,白云岩的抗压强度和变形模量随着围压的增加而增大,白云岩强度增长因子有显著的应变率效应;白云岩单位体积吸收能会随着围压的增大先升高而后降低,随平均应变率的增大而增大。在三维动静组合加载下,岩石的破坏模式为压剪破坏。  相似文献   

16.
采用电子万能试验机对TC18合金进行了常温准静态压缩实验,得到合金在准静态下的实验数据,根据实验数据,选用分离式Hopkinson压杆对TC18合金在温度分别为298K、523K、773K和1023K,应变率分别为500s-1、1000s-1和1500s-1下进行动态力学性能实验,得到了合金在高温动态压缩条件下的应力-应变曲线,分析了温度和应变率对TC18合金动态力学行为的影响。结果表明:在同一温度下,随着应变速率的增加,TC18合金的塑性应变明显增大,表现出一定的应变率增塑效应;在同一应变率下,随着温度的增加,材料的流变应力有显著的下降,表现出明显的热软化效应;在高应变率下的塑性变形过程中,应变率强化和热软化作用同时进行,当温度超过773K时,热软化作用大于应变率强化作用。  相似文献   

17.
李波波  杨康  李建华  任崇鸿  许江  左宇军  张敏 《煤炭学报》2018,43(10):2857-2865
利用等温吸附试验仪器与含瓦斯煤热-流-固耦合三轴伺服渗流装置,为模拟深部煤层瓦斯开采过程,分别进行不同温度下等温吸附试验与孔隙压力升高的渗流试验,建立考虑过剩吸附量修正的吸附模型并修正吸附膨胀模型,探究力热耦合作用下煤岩吸附与渗流变化规律。结果表明:瓦斯吸附量在不同温度下随瓦斯压力升高均呈增大趋势,随温度升高吸附量逐渐降低。在高压下需考虑过剩吸附量造成的误差,修正的Langmuir模型比原模型计算结果精度更高;建立了考虑温度与过剩吸附量修正的吸附变形模型与吸附膨胀模型,煤岩吸附应变随孔隙压力升高而减小,且温度越高应变变化量越小。随孔隙压力升高,煤岩渗透率及吸附膨胀与滑脱效应导致的渗透率变化量均呈下降的趋势,且随温度升高3者逐渐增加;吸附膨胀是引起煤岩渗透率减小的主要因素,吸附膨胀与滑脱效应对渗透率的贡献率随孔隙压力升高逐渐下降,其贡献率均随温度升高逐渐增加。  相似文献   

18.
姚兆明  李南  郭梦圆 《金属矿山》2022,51(11):58-63
人工冻结法不仅常用于软土、砂层中地铁旁通道开挖及基坑围护等工程,在富水、深厚岩土层矿山井筒建设中也常采用此方法。掌握人工冻土物理力学性质及蠕变规律对安全、快速施工至关重要。对采用冻结法施工的某矿立井深部地层黏土进行-5、-8、-10、-15 ℃下单轴抗压强度试验及不同应力水平的蠕变特性试验。试验结果表明:抗压强度与冻结温度呈线性相关;在同一试验温度下,随着应力等级升高,轴向变形呈上升趋势;在同一应力水平下,随着试验环境温度下降,轴向变形呈下降趋势。引入考虑温度效应的经验蠕变模型,在各负温及不同应力水平下的应变与时间取对数具有线性关系的基础上,将线性表达式代入对应公式中联立方程组进行求解确定模型参数。将模型计算值与试验数据进行对比,反映出该模型能够较好地模拟人工冻结黏土蠕变初始变形阶段和稳定变形阶段。所建立的模型具有参数较少、易于确定、参数物理意义明确等优点,为冻结壁设计提供了一种有效的计算方法。  相似文献   

19.
张伟强  郭金 《煤炭学报》2012,37(1):167-171
为了确定调质态40CrNi2Mo钢在不同应变速率下的低温力学性能及其相互关系,采用静拉伸、系列冲击及分离式霍普金森压杆试验对40CrNi2Mo钢低温力学性能进行了研究。结果表明,随温度降低,40CrNi2Mo钢静拉伸强度提高,而塑性下降;其韧脆转变温度出现在-40~-51 ℃。在高速应变条件下,钢的屈服强度和加工硬化指数均随着试验温度的降低而降低;而压缩率主要随应变速率的增大而增加。高速应变产生的绝热剪切效应降低了钢在低温状态下的强度,也促进了冲击韧性的急剧下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号