首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 19 毫秒
1.
采用等离子熔覆技术在42CrMo表面制备耐磨合金层,通过金相显微镜、X射线衍射仪对熔覆层显微组织及物相进行观察分析,采用维氏硬度仪测量熔覆层金属的显微硬度,选用磨损试验机对熔覆层金属耐磨性能进行检测。结果表明:与等离子熔覆制备1Cr13合金层相比,通过等离子熔覆-注入技术制备1Cr13-B4C复合合金层,其熔覆层显微组织晶粒细化,硬度与耐磨性能显著提高。  相似文献   

2.
采用手持式等离子熔覆设备,在煤矿用刮板输送机中部槽表面熔覆高硼Fe-Cr合金层,并对其进行磨损试验。结果表明:熔覆层主要由γ-(Fe,N i)、(Cr,Fe)2B、Fe2B和Fe23(C,B)6等物相组成;随着含硼量由2.5%逐步增加至5.5%,熔覆层的硬度和耐磨性呈先增大后降低趋势;含硼量为4.5%时,熔覆层的相对耐磨性是基材的5.4倍。井下试验表明,熔覆后中部槽使用寿命可延长2~3倍。  相似文献   

3.
采用数控等离子熔覆设备,在煤矿用刮板输送机中部槽中板易磨损部位熔覆Fe-Cr-B-Si合金层,并对其磨损机制进行了分析。结果表明:熔覆层主要由γ-Fe、(Cr,Fe)2B和Fe2B等物相组成;熔覆层的磨损机制为微切削磨损,其相对耐磨性是基材的5.4倍。  相似文献   

4.
采用激光熔覆技术在QAl9-4铝青铜表面熔覆生成一层合金层,对激光熔覆后QAl9-4铝青铜试样和未经过激光熔覆处理的QAl9-4铝青铜在润滑条件下的摩擦性能进行对比分析.结果表明,激光熔覆后的试样摩擦因数和磨损体积都比未经过处理的试样低.激光熔覆层的高耐磨性主要取决于其存在强化相,在润滑条件下磨损失效形式主要为磨粒磨损,但随着摩擦速度的增加,材料表面逐渐产生粘着磨损.由于激光熔覆层基体强度高,以及强化相在润滑摩擦过程中形成高强度的骨架和光滑的支撑面,摩擦过程中形成的犁沟又具有存储润滑油的作用,因此激光熔覆层表现出很好的润滑摩擦磨损性能.  相似文献   

5.
激光熔覆Ni60和Ni60/SiC涂层磨损性能的研究   总被引:1,自引:0,他引:1  
采用激光熔覆技术分别在45钢表面制备了Ni60及Ni60/SiC涂层,研究了熔覆层的摩擦磨损和冲蚀磨损性能,并讨论了其磨损机理。研究结果表明:熔覆层的耐摩擦磨损性能和耐冲蚀磨损性能与45钢和Q235钢相比均有大幅的提高。  相似文献   

6.
采用等离子熔覆技术,通过对材料及工艺的参数优化,在现有耐磨材料的基础上研发新型铁基耐磨熔覆层材料。对研发的4种新型熔覆层进行性能评价,结果表明,B、C、D试样的冶金结合都比较好,熔覆层从熔合线往上的组织变化比较平缓,为平面晶、枝晶及等轴树枝晶;B试样熔覆层组织中气孔率极小,硬度最高,A试样在组织和硬度性能上都有缺陷;摩擦过程中摩擦因数均呈现4个变化阶段:迅速下降区、小幅上升区、波动区和稳定区,C试样的磨损量最少,磨损形貌最轻微;基底的磨损机制以黏着磨损、磨粒磨损以及疲劳磨损为主,熔覆层材料以磨粒磨损为主。  相似文献   

7.
通过氩弧焊在基体材料Q235钢板上熔敷铁合金混合粉末压块,研究了压块成分及堆焊工艺对堆焊层组织及性能的影响。结果表明:在固定压块粉末总质量为16 g、镍铁含量为0.64 g、堆焊电流为180 A时,堆焊层的硬度最大,达到HRC48.9;耐磨性最高,相对磨损量为0.013 4 g/(cm^2·min)。  相似文献   

8.
利用等离子束表面熔覆设备,在煤矸石制砖搅拌机叶片表面熔覆含硼铁基合金粉末,得到呈冶金结合的熔覆层,并对熔覆层的显微组织及其耐磨性进行了研究.结果表明:熔覆层由弥散分布的(Cr,Fe)2B,Fe2B,Mo2C,Fe23(C,B)6相和γ-(Fe,Ni)枝晶组成,其表面硬度平均值为67HRC.磨损试验表明,熔覆层的耐磨性分别是叶片基体和K400耐磨钢的6.9倍和6.3倍.工业性试验表明,和未熔覆的叶片相比,熔覆后叶片使用寿命可提高3~4倍.  相似文献   

9.
等离子熔覆高耐磨无火花本安型镐型截齿研究   总被引:1,自引:0,他引:1  
采用等离子熔覆强化技术在截齿的头部熔覆一层专用金属陶瓷层,截齿喷淋淬火时截齿头部加保温防护罩保护硬质合金刀头,不仅有效的保护了截齿硬质合金刀头不过早脱落,也避免了传统工艺先钎焊后调质或盐浴等温淬火对焊缝和硬质合金刀头的潜在危害,使截齿的整体性能大幅度提高.金属陶瓷层有效防止了采煤时产生火花,提高了煤炭生产的安全性.  相似文献   

10.
激光熔覆层裂纹的影响因素   总被引:3,自引:0,他引:3       下载免费PDF全文
对激光熔覆层裂纹形成的影响因素进行了研究,激光熔覆试验结果表明:熔层组织中共晶组织和熔覆层底部粗大的树枝晶是熔覆层的薄弱区,易于产生裂纹;在熔覆前后或进行过程中,对基材进行预热处理,可有效消除或减少熔覆层中的裂纹;增大激光功率、减少送粉量,激光熔覆熔层开裂倾向降低;增大熔覆速率,熔覆层的开裂倾向将增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号