首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
煤的孔隙结构特征与瓦斯的吸附和运移密切相关,构造煤的孔隙结构特征由于受到构造应力的破坏而趋于复杂,因此开展构造煤孔隙发育的研究是提升瓦斯治理水平的重要方向。以西山煤田南部东于煤矿三组构造煤和一组原生煤为研究对象,采取低温液氮吸附法和扫描电子显微镜(SEM),联合观测构造煤与原生煤的孔隙特征。研究表明:三组构造煤的氮气吸附量为原生煤的2.04倍、1.49倍和2.90倍,三组构造煤的孔容为原生煤的2.08倍、1.53倍和2.96倍;三组构造煤的孔容大部分由微孔和小孔提供均达到69.71%以上,孔比表面积大部分由微孔提供均达到了79.04%以上;原生煤的孔容大部分由微孔和小孔提供达到了89.38%,孔比表面积微孔占比93.97%;三组构造煤的孔隙结构相比原生煤更加复杂,具有更大的分形维数(2.6985~2.7106);三组构造煤(10000倍)表面分形维数分别为1.962、1.979、1.947均大于原生煤1.945,构造煤与原生煤相比有更为发育的孔隙特征;分形维数D1与总孔比表面积、微孔比表面积成正比;挥发分含量在一定范围内与总孔比表面积、微孔比表面积、小孔比表面积成...  相似文献   

2.
《煤矿安全》2015,(6):26-28
为了研究山阳井田构造煤与原生结构煤的孔隙特征差异,对山阳井田构造煤与原生结构煤样品分别进行压汞、低温液氮吸附、扫描电镜等实验,结果表明与原生结构煤相比,构造煤的孔隙度、孔容、比表面积增大,其中大孔孔容、比表面积减少,中孔、小孔及微孔孔容、比表面积增大;构造作用促使构造煤中的惰质组破裂产生角砾,外形多呈不规则,尖角直棱,角砾之间没有位移或位移量很小,角砾孔多为大孔级孔隙,角砾孔大小以2μm左右居多,且连通性较好,相对有利于煤层气资源勘探开发。  相似文献   

3.
构造煤的孔隙结构具有非均质性、自相似性及标度不变性等分形特征,难以用传统的欧式几何方法对其孔隙特征进行定量描述。为了研究构造煤不同尺度孔隙结构的分形特征及表征方法,采用低温CO_2吸附法、低温N_2吸附法和压汞法等分别测试了4种试验煤样(原生结构煤、碎裂煤、碎粒煤和糜棱煤)的微孔、介孔及大孔孔隙结构,分析了构造煤中不同尺度孔隙的分形特征,探讨了构造煤孔隙结构多尺度分形特征综合表征方法,运用灰色关联方法研究了构造煤孔隙分形维数的影响因素。研究结果表明:基于CO_2吸附数据的微孔填充模型、基于N_2吸附数据的FHH模型和基于压汞数据的热力学模型分别能够对构造煤微孔、介孔和大孔孔隙的分形特征进行有效表征,不同尺度孔隙的分形维数随构造煤类型变化的规律不同,其中微孔分形维数及介孔中2~6 nm孔径段的分形维数随构造煤的破坏程度增大而增高,其余尺度孔隙的分形维数变化则没有明显规律。以阶段孔容比例为权重,对构造煤不同尺度的孔隙分形维数进行加权计算,即得构造煤多尺度综合分形维数,其能够反映不同尺度孔隙的分形特征,表现为多尺度综合分形维数随构造煤变形程度的增强而增大。根据灰色关联度排序,中值孔径、微孔孔容、总比表面积、微孔比表面积等因素对分形维数的影响最大,最可几孔径、总孔容、介孔比表面积、微孔比表面积比例等因素次之,灰分、挥发分、介孔孔容、介孔比表面积比例等因素对分形维数的影响相对较小。  相似文献   

4.
煤储层中孔隙结构的发育程度决定了煤体瓦斯的吸附性能,通过低温液氮吸附实验测试了长焰煤、焦煤和无烟煤3种不同变质程度煤样的孔隙结构;基于分形理论对孔隙结构进行了量化表征,并结合煤的甲烷等温吸附实验,深入分析了不同变质程度煤孔隙结构对甲烷吸附特性的影响。结果显示:变质程度与孔隙分形维数D1呈现出“浴盆式”变化规律,与分形维数D2符合线性负相关关系;而煤样的微孔比表面积和孔容均与吸附常数a呈正相关关系,即微孔比表面积和孔容越大,煤的吸附能力越强;随着孔隙分形维数D1的增加,吸附常数a呈现出近似线性增长趋势,煤体孔隙结构越不光滑,比表面积也会越大,从而使得煤的甲烷极限吸附量也会有所升高。  相似文献   

5.
《煤矿安全》2019,(11):169-174
为了研究中低煤阶煤孔隙特征及其对瓦斯放散特性的影响,对采集的中低煤阶长焰煤、气煤、焦煤和1/3焦煤4个煤类共计14组样品进行了煤工业分析、煤岩分析、液氮吸附和瓦斯放散初速度测试,结合分形理论研究了中低煤阶煤比表面积、孔容和孔隙分布特征及其瓦斯放散特性。结果表明:中低煤阶煤孔比表面积孔径分布主要以小孔和微孔为主,孔隙形态为以一端开口的孔为主,含有少量两端开口的孔,部分样品含有少量墨水瓶形孔。中低煤阶煤孔隙具有较好的分形特征,孔比表面积、孔容与分形维数具有明显的对数关系。中低阶煤瓦斯放散初速度较小,瓦斯放散初速度随着分形维数增大而减小,随着平均孔径的增大而增大。随着各孔径段孔容积、孔比表面积含量增加瓦斯放散初速度均呈负对数减小趋势,各孔径段比例和煤孔隙形态类型的细微变化对瓦斯放散初速度的影响不大。  相似文献   

6.
煤层气的赋存和产出与煤储层孔隙系统的发育程度有关,原生结构煤层受到破坏变形后其孔隙结构特征将发生明显的变化,从而影响煤层气的吸附/解吸和扩散过程。通过对沁水盆地赵庄井田3号煤层不同煤体结构样品进行低温液氮、低压二氧化碳吸附分析和等温吸附试验,分析了不同破坏强度煤的孔隙结构和吸附性变化规律;应用试验数据和数值分形模型,揭示了不同煤体结构煤的孔隙结构分形特征及其对煤中甲烷吸附、扩散的影响。结果表明:随着煤体结构破坏强度的增大,煤的比表面积和孔隙容积均增大,50~300 nm的孔隙所占比例逐渐降低,2~50 nm的微孔和中孔以及小于2 nm的超微孔增加,超微孔为煤中主要吸附孔,孔径主要分布在0.45~0.65 nm和0.80~1.0 nm。N2、CO2和CH4的吸附量随煤体结构破坏程度的增大而增加,吸附性由大到小顺序为原生结构>糜棱结构>碎粒结构>碎裂结构。微孔、中孔和大孔孔隙结构分形维数表明,构造变形后的煤孔隙结构将被简单化,破坏程度较强的煤具有较粗糙的孔隙表面(对应较高的D1)和较为...  相似文献   

7.
李阳  张玉贵  张浪  侯金玲 《煤炭学报》2019,44(4):1188-1196
我国煤层受多期次构造运动影响构造煤普遍发育,构造煤孔隙大小分布尺度较广(毫米~纳米级),孔隙结构较为复杂。不同尺度的孔隙结构控制着煤层气的吸附-解吸(孔隙表面)、扩散(纳米级孔隙)与渗流(微米~毫米级孔隙)等过程,是影响煤层气储存与运移的重要因素。为研究构造煤不同尺度孔隙结构的分布特征与演化规律,在潞安矿区采集4种破坏类型煤样,利用压汞法、低温N_2吸附法及CO_2吸附法分别测试了煤样的孔隙分布特征,对比分析了各测试方法的优势孔径段,提出利用CO_2吸附法表征构造煤微孔(2 nm)、低温N_2吸附法表征介孔(2~50 nm)、压汞法表征大孔结构(50 nm)的孔隙结构多尺度联合表征方法。实验结果表明所采煤样的孔容和孔比表面积均主要分布在微孔阶段,在0. 6 nm左右时的孔隙孔容量和孔比表面积达到最大,其中微孔容占总孔容的70%以上,微孔孔比表面积占总孔比表面积的99%以上,煤中孔容和孔比表面积分布存在微孔大孔介孔的规律。分析构造煤孔隙特征与煤体破坏类型的关系,随煤破坏程度增加,孔容和孔比表面积逐渐增高,大孔孔容比及介孔孔容比逐渐增大,微孔孔容比逐渐减小;孔容增幅主要体现在大孔阶段,比表面积增幅则主要体现在微孔阶段。其中大孔演化主要受控于角砾孔、碎粒孔及摩擦孔等外生孔,介孔演化受控于煤的大分子堆叠结构及分子间距,微孔演化主要受控于煤中芳香层片大小及排列方式。  相似文献   

8.
为了研究构造煤的孔隙结构对瓦斯解吸特征的影响,选取了发耳煤矿和青龙煤矿的煤样,进行了压汞试验和瓦斯解吸试验,对构造煤和原生结构煤的孔隙结构及解吸特征进行了对比分析,结果表明:原生结构煤中的大孔和中孔的孔容含量约占总孔容的12.81%~12.19%,构造煤中的大孔和中孔的孔容含量约占总孔容的69.85%~82.15%,原生结构煤和构造煤的孔比表面积占比较高的都是微孔和小孔,表明构造煤结构变化主要体现在大孔和中孔的孔容占比增加;构造煤的初期瓦斯解吸速度和瓦斯解吸量明显大于原生结构煤,主要原因是构造煤的大孔和中孔的孔容含量增加,使瓦斯有了更多的渗流通道和储存空间,增加了瓦斯解吸速度。  相似文献   

9.
为研究突出孔洞构造煤与原生结构煤孔隙特征对瓦斯吸附特性的影响,以三甲煤矿突出孔洞构造煤和原生结构煤为研究对象,运用压汞和液氮吸附实验相结合的方法对不同结构煤体孔隙结构进行研究;结合Menger几何模型分析不同结构煤体孔隙分形特征,进一步阐述孔隙结构分形特征对瓦斯吸附特征的影响。结果表明:原生结构煤与突出孔洞构造煤均存在滞后环,且突出孔洞构造煤的滞后环明显大于原生结构煤的滞后环;突出孔洞构造煤分形维数大于原生结构煤,突出孔洞构造煤孔隙复杂程度比原生结构煤高,突出孔洞构造煤孔隙复杂程度为瓦斯的吸附准备了良好条件;突出孔洞构造煤整体孔隙发育情况比原生结构煤要好,微孔、小孔阶段孔隙发育情况远大于原生结构煤。  相似文献   

10.
《煤矿安全》2017,(1):9-12
为完善贵州矿区煤孔隙结构及瓦斯吸附特性,促进煤层气的抽采和防治煤与瓦斯突出,以贵州矿区4个不同矿井煤样为研究对象,利用扫描电镜、压汞和等温吸附等手段进行测试。结果表明:贵州煤大量发育裂隙和次生孔隙,这些裂隙和孔隙是煤层瓦斯的吸附场所和流通通道;贵州煤的孔容在0.146 8~0.228 9 m L/g之间,孔比表面积在15.434~18.260 m~2/g之间,平均孔径在33.4~51.4 nm之间,煤中大孔及裂缝是孔体积的主要贡献者,5~10 nm之间的孔隙是煤比表面积的主要贡献者,煤中开放孔较少,孔隙连通性一般;瓦斯的吸附能力与孔体积、孔比表面积具有良好的正相关性,Langmuir单分子层吸附方程适合煤对甲烷的吸附。  相似文献   

11.
以大宁煤矿3 #煤层的原生煤和构造煤为研究对象,以压汞实验结构为基础并结合分形维数理论,对原生煤和构造煤的孔隙结构特征进行了对比分析,研究发现:构造煤的进汞总量是原生煤的3倍左右;原生煤无滞后回线,孔隙形态主要以管状或者平板型孔为主;构造煤有明显滞后回线,孔隙形态以“墨水瓶”似的孔为主;原生煤只有一个突破压力,构造煤却有两个;原生煤分形维数特征关系曲线存在着一个突变点,而构造煤则存在两个突变点.综上可知,构造煤内孔隙结构更复杂、连通性更差,瓦斯更难运移,并且更容易遭受破坏.  相似文献   

12.
通过对不同煤体结构的低温氮吸附实验发现,各孔径段的孔容比与比表面积比是不对应的,特别是微孔的孔容较小,但是比表面积较大。与原生结构煤相比,共生构造煤在各阶段孔容和比表面积都有所增加。煤储层孔隙是瓦斯的主要聚集场所,而且也是其运移通道;孔隙结构不仅制约着煤体的瓦斯含量,而且对解吸和扩散也有重要影响。  相似文献   

13.
煤的吸附孔结构对瓦斯放散特性影响的实验研究   总被引:1,自引:0,他引:1  
为揭示煤的吸附孔结构对瓦斯放散特性影响机理,选择新疆阜康矿区典型矿井煤样,进行低温氮吸附及瓦斯放散初速度实验,研究了煤的吸附孔特征参数及其对瓦斯放散初速度的影响。结果表明:实验范围内阜康矿区煤的吸附孔中瓦斯的主要放散方式是Knudsen及过渡型;吸附孔各参数对瓦斯放散特性的影响不同,平均孔径越大,瓦斯扩散阻力越小,瓦斯放散初速度越大;孔隙及各孔径下的比表面积和孔容越大,瓦斯放散初速度越小;瓦斯放散初速度与微孔和过渡孔的孔容占比为负线性关系,与中孔的孔容占比为正线性关系,与各孔径下比表面积占比无明显关系;煤的孔隙在研究尺度范围内分形特征显著,瓦斯放散初速度随分形维数的增大而线性减小。  相似文献   

14.
为了研究卧龙湖矿8煤层构造煤与原生结构煤孔隙特征及瓦斯解吸规律,分别采用压汞法和解吸试验对4组煤样进行试验研究。试验结果表明:构造煤中孔和大孔孔容所占比例高于原生结构煤,构造作用对煤的中孔和大孔有明显的改造效果,而且可能产生新的微孔和小孔;构造煤微孔和小孔的比表面积和分别占总比表面积的98.85%和98.74%,原生结构煤微孔和小孔的比表面积和分别占总比表面积的99.52%和99.37%,表明微孔和小孔决定煤的比表面积,构成煤层瓦斯的主要吸附空间;同时构造煤瓦斯解吸能力显著强于相同煤阶的原生结构煤,原因在于构造煤含有较多的中孔和大孔,为瓦斯的运移提供了通道。构造作用对煤的孔隙结构改造进而影响煤的解吸性能,增加了煤与瓦斯突出的危险性。  相似文献   

15.
为研究同一煤层煤体孔隙结构及其瓦斯吸附性能与埋深的关系,通过等温吸附试验、低温N2吸附试验,测定了4个不同埋深煤样的瓦斯吸附量和孔容、孔比表面积等孔隙结构参数,应用孔隙分形理论研究了不同埋深煤样的分形特征,并确定了孔隙结构参数与吸附常数的关系。结果表明:随着埋深的增加,煤样的孔比表面积增加,瓦斯吸附量增加;4个煤样中埋藏最深的煤样较最浅煤样比表面积增加了1.2603 m2/g,总孔容减小了0.0026 mL/g,瓦斯吸附量增加了67%,吸附饱和度降低了7.4%;吸附常数a与孔比表面积和分形维数的幂函数呈正相关关系,吸附常数b与吸附常数a呈幂函数关系。因此,可根据不同埋深煤样孔隙结构参数量化瓦斯吸附性能,为细化同一煤层瓦斯灾害防治方案提供了理论依据。  相似文献   

16.
构造煤的瓦斯放散特征及孔隙结构微观解释   总被引:1,自引:0,他引:1       下载免费PDF全文
张慧杰  张浪  汪东  侯金玲 《煤炭学报》2018,43(12):3404-3410
采用恒温煤粒瓦斯放散试验方法,研究了构造煤和原生煤瓦斯放散过程的差异性,结果表明构造煤在瓦斯放散初始1 min的瓦斯解吸量是原生煤的2.15~4.06倍,构造煤趋近极限瓦斯解吸量所需时间不足原生煤所需时间的25%,原生煤的极限瓦斯解吸量略高于构造煤,构造煤与原生煤对典型瓦斯放散数学表达式的适用性存在很大不同。为解释试验结果,采用压汞法和低温氮吸附法对煤的孔隙结构进行测试,分析得到中孔及大孔分布是导致构造煤和原生煤瓦斯放散特征差异的主要因素,大分子结构等其他因素对瓦斯放散特征的影响有待于进一步研究。  相似文献   

17.
采用低温液氮实验对研究构造煤的纳米级孔隙结构特征,并利用等温吸附实验解释构造煤纳米孔隙与瓦斯吸附能力的关系。研究结果表明:3种煤样不同孔径孔容和比表面积都有所增加,约在50 nm孔径出现峰值,得出纳米孔隙是煤对瓦斯吸附强度的决定因素。相对于原煤,构造煤吸附瓦斯量略有增加,相对于同层共生原煤,构造煤吸附能力的变化主要取决于纳米级孔隙的变化,其纳米级孔隙微孔的比表面积是影响瓦斯吸附量的主要因素。  相似文献   

18.
为探究煤的吸附孔结构对瓦斯放散特性影响机理,选择原相煤矿02、2号煤层原生煤及碎粒煤煤样,进行压汞法及低温氮吸附试验,来获得煤的孔容、比表面积等重要孔隙结构信息,并为确定工作面预测的煤层发生煤与瓦斯突出敏感指标、临界值和判定工作面突出危险性提供主要依据。  相似文献   

19.
基于液氮吸附实验研究了构造煤纳米孔隙结构特征,采用FHH模型探讨了孔隙分形特征及其储层物性意义。结果表明:煤纳米孔隙结构受构造作用控制明显,孔容和比表面积均呈2个突变点、3段式的变化规律。构造煤纳米孔隙具有显著的分形特征,分维数随煤构造变形程度的增强而增大。构造变形可提高煤的吸附能力,而渗透性在脆性变形煤中有所改善。  相似文献   

20.
申晋国 《煤》2019,(11)
煤孔隙特征对煤层气赋存、运移及煤层气开发具有重要控制作用,文章采用低温液氮吸附法对寺河煤层气区块3号煤孔隙特征进行了研究。结果表明:寺河煤层气区块3号煤孔裂隙系统极为发育且复杂多样,煤中孔隙主要为连通性和渗透性较好的四边开口的平行板状孔和两端开口的圆筒孔;煤中孔隙主要为过渡孔和微孔,使得煤比表面积总体较高;大孔及有效大孔不甚发育,孔容总体较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号