首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
施峰  王宏图  舒才 《煤炭学报》2018,43(4):1024-1030
为掌握煤巷掘进煤壁瓦斯涌出量的动态变化规律,在传统二维煤巷瓦斯涌出量计算方法中引入固气耦合模型,提出基于固气耦合及巷道断面瓦斯涌出量时间积分的煤壁瓦斯涌出计算方法,并通过现场实测瓦斯涌出量验证了计算结果的准确性。研究结果表明:煤巷掘进速度恒定,煤壁瓦斯涌出量随掘进距离逐渐增大,增幅不断减小,符合指数衰减多项式的变化规律;间断式掘进循环的煤壁瓦斯涌出量呈锯齿状增加,总体涌出趋势与恒速掘进相同;随时间增加,不同掘进循环瓦斯涌出总量差异趋于稳定,长时间掘进,掘进循环内瓦斯涌出量波动对瓦斯涌出总量的影响可忽略;瓦斯压力对煤巷煤壁瓦斯涌出具有较大影响,瓦斯压力越大,煤壁瓦斯涌出量随掘进距离的增幅越大,且存在瓦斯压力临界值,当巷道煤层瓦斯压力超过该值后,巷道瓦斯浓度可能超限。根据项目背景的工程条件,计算得到该煤巷掘进的临界瓦斯压力。  相似文献   

2.
煤巷瓦斯涌出规律及其连续性积分模型   总被引:2,自引:0,他引:2  
本文通过对煤层巷道掘进时煤壁瓦斯涌出规律的研究,提出了连续积分模型,通过解析求解得出了煤巷掘进时瓦斯涌出的不均匀准数及其变化规律。通过解析求解得出的煤巷掘进瓦斯涌出量表达式,比计算机求解更加明确地指出了影响涌出量的因素及其相互关系。为煤巷瓦斯涌出预测和处理提供了理论和方法。  相似文献   

3.
本文通过对煤层巷道掘进时煤壁瓦斯涌出规律的研究,提出了连续积分模型,通过解析求解得出了煤巷掘进时瓦斯涌出的不均匀准数及其变化规律。通过解析求解得出的煤巷掘进瓦斯涌出量表达式,比计算机求解更加明确地指出了影响涌出量的因素及其相互关系。为谋巷瓦斯涌出预测和处理提供了简便明了的理论和方法。  相似文献   

4.
卢晓勇 《现代矿业》2014,30(9):173-174
为解决中岭煤矿3#煤层在煤巷掘进过程瓦斯涌出超限的问题,基于分源法对该煤层瓦斯来源进行了分析。研究发现,在煤巷掘进过程中,其瓦斯涌出来自于新增煤壁,而落煤瓦斯的涌出占到很少部分。为此,提出了减少新增煤壁瓦斯涌出的方法,解决了该煤层煤巷掘进过程中瓦斯超限的问题。  相似文献   

5.
通过对新元煤矿31004掘进工作面进行气相压裂试验,分析总结出实施气象压裂后的瓦斯涌出规律:巷道回风流中瓦斯浓度升高出现一个峰值,主要原因是气相压裂的扰动,煤层造成裂缝,煤层瓦斯沿裂缝涌向巷道;实施气相压裂措施后,煤巷掘进过程中,瓦斯涌出均衡,而且数据监测显示,双孔气相压裂后割煤时的瓦斯涌出量大于单孔压裂后割煤时的瓦斯涌出量。实施气相压裂措施后,实现了煤巷安全高效快速掘进。  相似文献   

6.
候三中 《煤炭技术》2016,(4):146-149
应用数值模拟的方法对动态掘进工作面瓦斯涌出量进行了计算,得出在不同掘进速度下巷道的瓦斯涌出规律,并建立二元回归模型分析了掘进速度和掘进距离与巷道的瓦斯涌出量之间的关系。  相似文献   

7.
本文用数值模拟的方法对动态掘进工作面瓦斯涌出量进行了计算,得出在不同掘进速度情况下巷道的瓦斯涌出规律,并建立二元回归模型分析了掘进速度和掘进距离与巷道的瓦斯涌出量之间的关系。  相似文献   

8.
高瓦斯矿井在巷道掘进过程中,瓦斯涌出量大、涌出均匀性差制约巷道的快速掘进。为解决该难题,提出煤壁喷浆工艺优化技术,对煤巷掘进工作面迎头释放孔施工进行优化设计,变"本巷跟进"为"邻巷跟进",对煤层瓦斯涌出进行有效控制,快速降低煤层瓦斯涌出量,提高瓦斯涌出均匀性,降低回风流瓦斯浓度,从而提高掘进效率,利用煤壁喷浆工艺优化提高喷浆效率。喷浆速度提高5倍,降低掘进期间煤壁瓦斯涌出,回风流瓦斯平均最大浓度分别由0.75%降至0.55%,涌出量由12.5 m~3/min降至8.5 m~3/min,迎头50 m范围瓦斯涌出量由8 m~3/min降至5 m~3/min,有效降低了巷道生产过程中瓦斯涌出。  相似文献   

9.
采用有限体积法对厚煤层煤巷煤壁瓦斯涌出规律进行了数值模拟,得到不同条件下煤壁煤体瓦斯压力分布与煤壁瓦斯涌出速率。根据数值模拟结果,采用数据拟合曲线方式得到煤巷煤壁瓦斯涌出速率公式。在此基础上得出在厚煤层煤巷掘进过程中煤巷煤壁瓦斯涌出速率公式。研究结果表明,厚煤层煤巷掘进过程中煤壁瓦斯涌出速率与煤层条件和煤巷掘进速度密切相关,对控制矿井瓦斯涌出量具有一定的指导意义。  相似文献   

10.
利用掘进工作面煤壁渗透瓦斯涌出量占掘进工作面整体瓦斯涌出量的比例及其变化情况,反映工作面煤体相对渗透性的发展状态及发展趋势,并建立了掘进工作面煤壁渗透瓦斯涌出能力的计算模型。通过某矿突出煤层3条典型的掘进巷道发生喷孔与不喷孔现象时煤壁相对渗透性的差异,证明了利用煤壁相对渗透性变化情况反映突出危险的实用性,为利用瓦斯涌出动态特征连续预测工作面突出危险性寻找到新的技术方法。  相似文献   

11.
为了实现综采工作面瓦斯涌出量精准化预测的目的,以煤体瓦斯涌出规律本构方程为理论研究基础,综合综采工作面各瓦斯涌出源自身特征因子,建立了煤壁瓦斯涌出量数学预测模型、落煤瓦斯涌出量数学预测模型、采空区遗煤瓦斯涌出量数学预测模型以及邻近层瓦斯涌出量数学预测模型。运用该数学预测模型对煤层群条件下的上社煤矿9209和沙曲煤矿14205综采工作面瓦斯涌出量进行了计算,计算结果与实测统计值之间的误差仅为2.60%和4.92%,均小于5.00%,验证了该数学预测模型的准确性。在此基础上,运用该数学预测模型对9209和14205综采工作面不同产煤量条件下的瓦斯涌出量进行计算,结果表明:9209和14205综采工作面瓦斯涌出量随工作面产煤量增加近似呈线性增大,其中邻近层瓦斯涌出量最为显著,该数学预测模型在综采工作面瓦斯涌出量预测工作中具有一定的实际应用价值。  相似文献   

12.
突出煤层卸压前后钻孔瓦斯涌出初速度的变化规律   总被引:2,自引:0,他引:2  
突出煤层卸压后用钻孔瓦斯涌出初速度进行工作面预测和效果检验时经常超过突出临界值,造成开采保护层后煤层突出危险性更大的现象.通过建立钻孔瓦斯涌出初速度的数学模型,利用数值计算得出突出煤层卸压前后钻孔瓦斯涌出初速度的变化规律,研究钻孔瓦斯涌出初速度的主要影响因素,从理论上解释突出煤层卸压后用钻孔瓦斯涌出初速度预测和效果检验超标的原因.结合淮南潘一矿突出煤层卸压前后煤巷掘进测定钻孔瓦斯涌出初速度,研究其变化规律.研究结果表明,在突出煤层卸压后用钻孔瓦斯涌出初速度预测和效果检验超标是由于煤层透气性增大,卸压瓦斯未得到充分抽采而产生的现象,此时工作面已无突出危险性.  相似文献   

13.
屯兰矿18403工作面采用沿空留巷Y型通风方式,工作面回采时的瓦斯来源主要为本煤层、邻近层和采空区瓦斯涌出,需从通风和抽采两方面入手进行瓦斯治理。对18403工作面的需风量进行了计算,对本煤层、上邻近层、下邻近层和采空区的瓦斯抽采方法进行了探讨。统计结果表明,采取综合瓦斯治理措施后,18403工作面的瓦斯抽采率达到87.2%,工作面回采过程中回风巷和回风隅角瓦斯浓度始终低于报警值0.8%,未发生由瓦斯超限引发的断电和停机故障。  相似文献   

14.
针对山西焦煤集团屯兰矿近距离煤层群开采过程中,采煤工作面底板瓦斯超限的问题,通过对近距离煤层群采掘工作面底板煤岩增透机理分析及回采工作面邻近层瓦斯涌出量计算,得出18205工作面底板瓦斯涌出量增大原因:18205工作面底板受采动影响,煤岩体形成裂隙带和卸压带,煤岩透气性系数成百倍增加,渗透率增大,为下邻近层瓦斯涌出提供了通道;下邻近层9#煤层瓦斯涌出量占18205工作面瓦斯涌出量的比例高达11.4﹪。结合理论分析、计算及开采条件,进行了底抽巷瓦斯抽采实验研究。结果表明:底板瓦斯浓度由0.46%降至0.1%,瓦斯抽放率提高了17%,矿井通风能力得到了提升。  相似文献   

15.
为了识别煤层群联合抽采混合气体瓦斯来源、确定各煤层瓦斯抽采占比,以小屯煤矿6、6及6煤层联合抽采瓦斯为研究背景,以碳同位素法和分层计量法为研究手段,分析各煤层瓦斯组分及碳同位素特征,识别混合气体瓦斯来源,确定各煤层瓦斯抽采占比。结果表明:小屯煤矿各个煤层瓦斯组分含量和碳同位素值存在差异性;建立了煤层群联合抽采瓦斯混源比例计算模型,碳同位素法确定混合气体中6煤层占10.82%~24.54%,6煤层占57.81%~69.58%,6煤层占5.88%~31.37%;分层计量法确定混合气体中6煤层占12.98%~19.55%,6煤层占55.28%~60.55%,6煤层占25.17%~26.47%。2种计算方法均证实了6煤层的混合比例最大,占据主导地位。研究结果表明,基于同位素进行煤层群联合抽采瓦斯混源比例的计算是科学准确的,为煤层群瓦斯联合抽采达标评判提供新的研究思路。  相似文献   

16.
为消除回采巷道掘进过程中煤与瓦斯突出危险,解决瓦斯涌出量大的问题,采用本煤层定向钻孔与普通钻孔相结合的瓦斯抽采方法,严格落实瓦斯抽放钻孔施工技术措施。实践表明,采取综合瓦斯抽采措施后,消除了突出危险,瓦斯抽采浓度最高达58%,掘进工作面瓦斯浓度控制在0.5%以下,巷道单月最高进尺达到200 m以上,保证了巷道掘进施工安全。  相似文献   

17.
刘伟  宋怀涛  李晓飞 《煤炭学报》2015,40(4):882-887
为研究厚煤层中巷道掘进时的瓦斯涌出规律,建立了移动坐标下的掘进工作面瓦斯涌出数学模型,通过引入巷道半径与长度准数、压力准数、掘进速度准数等无因次参数,将模型无因化,利用有限体积法对无因次方程进行离散,然后采用迭代法求解,并编制解算程序。解算结果表明,巷道周围煤体中的无因次瓦斯等压线呈子“弹头”状分布;随着速度准数的增大,无因次瓦斯压力及含量的分布等值线都向煤壁收拢,煤壁附近的无因次瓦斯比流量显著增大,从而导致无因次瓦斯涌出量急剧上升,且掘进工作面处的无因次涌出量增速更大。  相似文献   

18.
通过分析煤层渗透率与煤层有效应力的关系,建立煤层渗透率为变量时煤壁瓦斯单向流动数学模型,推导出煤壁瓦斯涌出量方程式。并以某矿为例,建立煤壁瓦斯涌出量与有效应力、暴露时间的关系并做曲线图,结果表明,以渗透率为变量进行煤层瓦斯流动研究更符合现场实际。  相似文献   

19.
王冬 《中州煤炭》2020,(4):74-78
针对复产矿井面临的瓦斯基础参数缺失,导致煤层掘进和回采期间配风量计算依据不足的问题,在分析井田地勘瓦斯地质资料的基础上,根据矿井开拓方式、煤层及瓦斯赋存规律,采用不同方法预测利民煤矿矿井瓦斯涌出量。结果表明,基于矿山统计法预测的矿井绝对瓦斯涌出量为28.17~34.11 m^3/min,相对瓦斯涌出量为59.96~78.74 m^3/t;基于分源法预测的矿井相对瓦斯涌出量为55.34~90.59 m^3/t,绝对瓦斯涌出量为36.90~60.39 m^3/min。2种方法预测矿井相对瓦斯涌出量的结果基本一致,而采用矿山统计法预测矿井绝对瓦斯涌出量时大大小于分源预测法,这与采用年度推算预测时未考虑矿井产量变化有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号