首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
为研究我国西部生态脆弱矿区植被与地下水关系及其对煤层开采的约束,采用路线穿越法剖析了典型区植被随潜水埋深变化的演替规律,利用遥感获取煤层开大规模采前(2000年)植被指数,并与同期地下水位埋深建立了统计关系。结果表明:研究区天然状态下植被随地下水位埋深的增加呈现明显的分带特征,潜水埋深0~4.0 m时植被对地下水依赖性较强;综合考虑水文地质条件和植被与地下水关系,榆神矿区可划分为植被约束区、地下水约束区和无约束区3个区;矿区开采15 a后,2014年矿区地下水位明显下降和植被盖度普遍升高现象并存,这与煤炭资源高强度开采区集中在无约束区有关。生态脆弱矿区井田规划和煤层开采必须重视植被和地下水约束研究,因地制宜地制定保水采煤技术预案。  相似文献   

2.
减少矿产资源开发过程中水资源损失是生态脆弱矿区水资源管理的重点,量化地下水位埋深与潜水蒸发速率关系,可为西部干旱矿区水资源保护提供科学思路。以隔水岩组厚度与导水裂隙带高度之差,划分了榆神矿区煤层开采地下水位变化趋势分区;以水位埋深变浅区覆盖的风积沙为试样开展潜水蒸发试验,分析蒸发过程及不同水位条件下潜水蒸发规律;通过在水分特征曲线的转折点处构建双切线,推导求取地下水埋深上限阈值的解析公式;采用漏斗法测定榆神矿区风积沙的水土特征曲线,利用最小二乘法求取特征参数,求取榆神矿区煤层开采区地下水埋深上限阈值。结果表明:榆神矿区地下水位变化趋势可分为3个区,即水位埋深变浅区、过渡区和水位埋深增加区。水位埋深变浅区多位于榆神三、四期规划区,此区域水位埋深4 m的面积占矿区面积的59.1%,开采沉陷极易造成地下水浅埋或出露;榆神矿区风积沙蒸发过程可分为2个阶段,即稳定蒸发阶段和水汽扩散阶段,地下水位埋深0.5 m左右时蒸发过程中的水分传输机制发生了转变,蒸发进入水汽扩散阶段;在稳定蒸发条件下建立了土壤水分运移方程,推求了地下水埋深上限阈值计算公式,地下埋深上限阈值与毛细上升高度和进气压力值有关,在数值上等于表层土与地下水之间毛管水力联系中断时表层土的基质势;地下埋深上限阈值可以通过van Genuchten方程的拟合参数α,n来求解;利用实测风积沙水土特征曲线的参数,确定榆神矿区地下水埋深上限阈值为50 cm,与蒸发试验结果一致。水位埋深变浅是中深部煤层开采遇到的普遍问题,对于干旱半干旱地区的榆神矿区而言,控制合理的水位埋深上限已成为煤层开采中需要面临的新的科学问题。  相似文献   

3.
生态脆弱矿区含(隔)水层特征及保水开采分区研究   总被引:34,自引:0,他引:34       下载免费PDF全文
研究发现,沙漠区植被对地下水水位埋深具有很强的依赖性,揭示了陕北榆神府矿区内合理生态地下水位埋深为1.5~5.0 m,煤层开采的导水裂隙导致地下水位下降,表生生态退化,控制地下水水位是生态脆弱矿区科学开采的核心。室内模拟实验和开采实践表明,当煤层上覆隔水岩组厚度≥33~35倍采高时,煤层开采不会导致地下水位下降;煤层上覆隔水岩组厚度≤18倍采高时,煤层开采会破坏隔水层,导致水位下降;18~35倍采高时,可采取"限制采高"等措施实现保水开采。剖析了煤层、含水层的空间关系,划分了保水开采条件分区,提出了区域采煤方法规划方案,指出以控制地下水水位为目标,以采动隔水层稳定性分区为基础,以采煤方法规划为手段的开采方法是生态脆弱矿区煤炭资源科学开采的有效途径。  相似文献   

4.
为研究干旱矿区地下水位下降和气侯变化对典型植被耗水的联合,选择榆神矿区优势植被沙柳为研究对象,以干旱指数表征气候变化,在野外调查、室内测试及原位试验的基础上,采用有限元算法分析不同地下水位埋深和干旱指数组合条件下的植被耗水特征。研究结果表明:植被生长受干旱指数和地下水位埋深的双重影响,当地下水埋深为1.0~2.0 m处,植被耗水主要受地下水控制;地下位水埋深为2.0~2.5 m时,植被耗水受地下水和干旱指数的双重影响;地下水位埋深大于2.5 m时,植被耗水主要受干旱指数影响;单指数模型可以很好的拟合地下水埋深和植被实际蒸腾量(T_a)与潜在蒸腾量(T_p)比值(T_a/T_p)的关系曲线,其相关系数高达0.99,利用单指数模型和T_a/T_p的比值可以反求出枯水年、平水年和丰水年条件下的植被生态临界地下水位,不同水文年的植被生态临界水位有差异性,认为当地下水位埋深大于1.24 m(平均),植被生长受到水分胁迫,当地下水位埋深大于2.06 m(平均),植被出现退化现象;同时,采煤引起地下水位下降对植被生态的影响是有限的,只有当采前地下水位埋深为1.0~2.5 m时,地下水位下降才会引发植被生态退化;当采前地下水位埋深大于2.5 m时,采煤引起地下水位下降基本对沙柳的生长不产生影响,此时植被生态退化主要受气候变化影响。目前,榆神矿区采前地下水位埋深普遍大于2.5 m,影响矿区生态环境的主要控制因素是气候变化(降水量),考虑到近年来榆神矿区降水量有增大趋势,因此出现"虽然地下水位明显下降,但是生态环境局部转好"的现象。  相似文献   

5.
植被对矿区地下水位变化响应研究   总被引:3,自引:0,他引:3       下载免费PDF全文
依据地下水浅埋区植被蒸腾对地下水位变化十分敏感的特征,构建沙柳根系吸水条件下的水流方程,分析生态脆弱矿区植生长对地下水位下降幅度的阈限。通过原位监测获取气象要素、土壤水、地下水与沙柳蒸腾量的动态变化规律,建立地下水变化与植被蒸散发关系数值仿真模型并对模型进行求解,模拟沙柳蒸腾对煤炭开采区地下水位变化的响应。研究发现:沙柳的日蒸腾量有受气象要素控制的特点,并在正午12时前后出现2次极值,水位越浅变化越显著。地下水对沙柳蒸腾的贡献值随着地下水位埋深的增加而减少,当地下水位埋深15 cm时,贡献率为100%;地下水埋深215 cm时,贡献率为0。在地下水浅埋区,地下水是沙柳蒸腾的主要水源,潜水埋深超过215 cm后地下水不再对沙柳生长提供水源,这也是沙柳对煤层开采地下水位下降的阈限。  相似文献   

6.
《煤炭技术》2017,(10):4-5
为了评价综采工作面保水采煤效果,通过对榆神矿区金鸡滩煤矿采煤工作面开采后导水裂缝带发育高度与隔水岩组厚度的比较分析、采空区潜水水位埋深探测等方法,系统分析采煤对萨拉乌苏组潜水的影响。研究认为,金鸡滩煤矿采煤工作面导水裂缝带发育最大高度为109.72 m,潜水水位最大下降幅度1.32 m,保持在合理的生态水位埋深范围,实现了保水开采。  相似文献   

7.
煤炭开采对相邻区域生态潜水流场扰动特征   总被引:2,自引:0,他引:2       下载免费PDF全文
陕北煤炭能源基地高强度开采易影响生态潜水的自然径流条件,针对自然保护区周边煤炭资源开采对地下水流场的扰动问题,以榆神矿区某井田为例,通过构建研究区煤-水空间结构水文地质模型,系统分析研究区生态潜水的赋存特征及其规律;采用物理模拟、数值模拟、现场实测等手段,综合分析煤层覆岩岩性组合结构、煤层与关键层间距、煤层厚度、煤层埋深、工作面长度等因素,利用相关分析方法提出了适合于研究区导水裂隙带高度计算的裂采比公式;根据水文地质条件和煤层采动方式,采用地下水数值分析方法,模拟了煤炭开采后萨拉乌苏组生态潜水流场变化,分析了煤层采动后生态潜水受扰动的特征。研究结果表明:区内萨拉乌苏组生态潜水含水层全区发育,其赋存受基岩面形态控制,生态潜水水位受地形、含水层厚度、地下水分水岭和地表水等影响;下伏关键隔水层(保德组红土)受沉积影响在研究区东南局部缺失,形成"天窗"导水通道;区内覆岩结构以硬-软-硬、硬-硬-软2种组合类型为主,覆岩结构类型对导水裂隙带发育高度及形态有重要作用;统计分析多个导水裂隙带发育高度结果,提出榆神矿区导水裂隙带最大裂采比为28.1倍,该数值对榆神矿区保水采煤及水害防治具有重要指导意义;通过计算发现,煤层开采后,在研究区东南部保德组红土缺失区将造成生态潜水漏失与水位下降,最大降深可达10 m。为保护生态潜水资源,建议开采研究区东南部"天窗"部位的煤层时,必须采取相应的保水采煤技术。  相似文献   

8.
榆神矿区浅表层水资源短缺,生态脆弱,在划分主采煤层上覆含、隔水层组合类型的基础上,采用Visual Modflow软件构建煤层开采的地下水流数值模型,研究地下水流场演化规律,统计区内地下水位观测网(56个水文观测孔)近3年的有效观测数据,掌握首采煤层开采地下水位动态变化。结果表明:2020年第四系萨拉乌苏组潜水流场与2005年统测地下水流场形态基本一致,地下水位降深值在西南部达10 m;近3年的地下水位未发生明显变化,仅YS22钻孔处受村民井取水引起水位下降。研究成果对榆神矿区地下水资源保护与利用具有重要的指导意义。  相似文献   

9.
榆神矿区浅表层水资源短缺,生态脆弱,在划分主采煤层上覆含、隔水层组合类型的基础上,采用Visual Modflow软件构建煤层开采的地下水流数值模型,研究地下水流场演化规律,统计区内地下水位观测网(56个水文观测孔)近3年的有效观测数据,掌握首采煤层开采地下水位动态变化。结果表明:2020年第四系萨拉乌苏组潜水流场与2005年统测地下水流场形态基本一致,地下水位降深值在西南部达10 m;近3年的地下水位未发生明显变化,仅YS22钻孔处受村民井取水引起水位下降。研究成果对榆神矿区地下水资源保护与利用具有重要的指导意义。  相似文献   

10.
西部生态脆弱矿区地下水对高强度采煤的响应   总被引:8,自引:0,他引:8       下载免费PDF全文
为研究榆神府矿区高强度煤层开采对地下水的影响,分析潜水位下降与煤层开采强度的关系,通过资料收集和实地调查两种方法,获取了矿区煤炭资源大规模开采前(1995年)地下水位和煤炭开采后(2014年)地下水位,2者叠加后求取了地下水位变化幅度,并与开采强度分区进行耦合,分析地下水位变化与开采强度的关系。研究区73.0%的区域地下水位未发生明显变化,但有7.3%区域地下水位下降幅度超过8 m,尽管比例小,但面积达758.9 km2,对区域地下水均衡产生了较大影响;高开采强度开采是矿区地下水位下降的主要驱动因素,71.5%的水位明显下降区(8 m)是由高强煤层开采导致的。导水裂隙带和含水层特征是煤层开采过程中控制地下水位变化幅度和范围的关键所在。高强度煤层开采区必须推行保水采煤技术才能达到资源与环境和谐发展的目的。  相似文献   

11.
煤层开采覆岩变形损伤是含水层失水主要原因,针对榆神矿区中深煤层开采影响下含水层失水规律研究程度不高问题,根据矿区主采煤层覆岩的地质与水文地质结构特征,总结提出中深煤层开采覆岩损伤变形影响下含水层"侧向直接与垂向渗漏"复合失水模式,以COMSOL多物理场耦合数值分析软件为平台,提出了中深煤层开采覆岩变形损伤与含水层失水数值分析模型的构建方法:①利用岩石力学模块,通过建立煤层开采条件下覆岩采动应力、孔隙率与渗透率耦合关系,模拟输出弯曲带覆岩各剖分节点的位移变形量,计算采动渗透系数变化;利用Mohr-Coulomb塑性破坏准则识别出采掘扰动下导水裂隙带的发育范围;②利用COMSOL软件平台中大变形几何体自动重新剖分计算模块,重新进行网格剖分,形成采动变形二次剖分网格;③在达西渗流模块中,根据含水层与导水裂隙带间的地下水运动状态的转化特征,把采动导水裂隙范围数值处理成达西渗流边界,重新输入采动渗透系数参数,以建立含水层地下水失水分析模型。最后以榆神矿区曹家滩煤矿为分析案例,建立工作面尺度上煤层开采覆岩损伤变形与含水层失水分析模型,模拟得出工作面2~(-2)煤层分层开采(5 m采高)条件下导水裂隙最大高度为128 m,发育至直罗与延安组基岩含水层内部,含水层失水总量35.84 m~3/h,其中侧向直接与垂向渗漏失水量分别为23.17,12.67 m~3/h,煤层开采对近地表松散含水层影响小;一次采全高(10 m采高)条件下导水裂隙最大高度为202 m,发育至富水性好的风化基岩含水层内部,失水总量增加至130.31 m~3/h,其中侧向直接与垂向渗漏失水量分别为92.65,37.66 m~3/h,煤层开采对松散含水层影响较大。  相似文献   

12.
榆神矿区是我国陕北煤炭基地的重要组成部分,针对榆神矿区煤层开采顶板覆岩含水层涌水规律研究不足等问题,通过系统分析地质与水文地质结构特征,将矿区开采煤层覆岩划分为松散孔隙、基岩与风化裂隙、烧变岩孔洞裂隙4个含水层组,以及主、亚2个隔水保护层组;根据煤层采动导水裂隙与覆岩含(隔)水层组不同组合关系下的含水层涌水特征,提出了浅埋煤层侧向直接涌水、中深煤层侧向与垂向复合涌水,以及深埋煤层侧向涌水与垂向弱涌水3种含水层涌水模式;并采用数值分析方法,以榆神矿区典型矿井为研究对象,构建了采煤工作面尺度上煤层开采3种模式涌水分析模型,模拟结果显示,浅埋煤层侧向直接涌水型(凉水井井田),主采煤层为4-2煤层,采动导水裂隙直接发育至松散含水层,工作面顶部含水层被疏干,总涌水量为47 m3/h,地下水流场受采动影响大;深埋煤层侧向涌水与垂向微涌水型(小壕兔1号井田),主采煤层为1-2煤层,采动导水裂隙发育至基岩含水层,总涌水量为21.87 m3/h,以侧向涌水为主,由于主、亚隔水层复合保护,垂向涌水微弱;中深煤层侧向与垂向复合涌水型(曹家滩井田),主采煤层为2-2煤层(均厚约为11 m),在分层开采条件下导水裂隙发育至基岩含水层内部,其侧向涌水量为23.17 m3/h,垂向涌水量为12.67 m3/h,地表松散含水层地下水流场变化较小,在一次采全高条件下导水裂隙突破亚隔水层,发育至风化基岩含水层底部,总涌水量增至131 m3/h,对松散含水层影响较大。此外,当导水裂隙带高度小于180 m、不能沟通风化基岩含水层时,随导水裂隙带高度增加涌水量增加幅度不大,当导水裂隙带高度大于180 m、导水裂隙揭露富水性较好的风化基岩含水层时,涌水量增加幅度较大,由此可见,抑制导水裂隙发育高度与覆岩强含水层的接触关系,是控制煤层覆岩涌水的一项重要措施。  相似文献   

13.
随我国煤炭开采向深部发展,奥灰承压水体上开采导致底板突水与其生态水位下降之间的矛盾日益突出。在分析渭北澄合矿区典型工作面5号煤层含(隔)水层组合特征的基础上,采用理论计算与现场实测综合确定5号煤层开采的底板破坏深度,从含水层结构破坏、生态水位、水质等方面研究了煤层开采对底板承压水的影响。结果表明:澄合矿区5号煤层开采底板破坏深度8~10.8 m,不同工作面斜长与底板岩性组合是影响该区底板破坏深度的主控因素,工作面斜长与底板破坏深度呈正相关,与底板含(隔)水层组合为负相关关系,煤层开采对底板含水层结构影响程度由大到小分别划分为Ⅰ,Ⅱ,Ⅲ级区,其中,Ⅰ级区主要分布于中南部和北部,面积为6.78 km2,占总面积的45.2%;煤层开采尚未对含水层水位、水质造成明显影响。提出以底板注浆加固技术为主保护水资源,稳定生态水位,为渭北地区煤炭工业健康发展找到有效途径。  相似文献   

14.
煤炭开采对水循环、水资源量及水环境影响较大。矿坑大量排水改变了地下水的运移规律,损害了矿区生态环境。在采煤过程中,最大限度地减小含水层结构破坏程度,控制地下水位下降幅度,是矿井建设面临的难题。以三交河煤矿煤炭开采为例,通过分析各煤层及其覆(伏)岩结构特征,计算导水裂隙带发育高度和采煤破坏的水资源量,认为上组煤开采对上覆含水岩组破坏较大,造成矿区水位超常下降,甚至疏干;下组煤开采对奥灰水影响较小。针对分析结果,提出了实施保水采煤以减少对覆岩含水层的破坏、加强对水资源的综合利用等应对措施。  相似文献   

15.
Zeng  Yifan  Pang  Zhenzhong  Wu  Qiang  Hua  Zhaolai  Lv  Yang  Wang  Lu  Zhang  Ye  Du  Xin  Liu  Shouqiang 《Mine Water and the Environment》2022,41(3):802-816

Striking a balance between high-intensity coal mining and environmental protection has been a challenge in the Yushen mining area, which is an important coal production base in China located in an arid and semi-arid ecologically fragile environment. The 122,109 working face of the Caojiatan coal mine was used as a model to coordinate coal production with ecological protection. Theoretical analysis and field monitoring revealed that the maximum surface subsidence was 5.6 m, and the development height of the diversion fracture zone was 21 times the coal seam thickness. The influence of mining process parameters and mining methods on surface ecological damage and water loss was further analyzed using the fluid–solid coupling method. The results showed that exclusive pursuit of high-intensity mining would induce irreversible disasters including aquifer water loss and cultivated land damage; the degree of influence was directly proportional to the working face length, mining height, and mining method. Proper adjustments of these parameters could help realize water-controlled coal mining. The results provide an empirical basis for allowing both exploitation of coal resources and protection of the environment in ecologically fragile areas.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号