首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 697 毫秒
1.
Solid particles have significant effect on flotation froth. In this research, the effects of coal particles of different size and hydrophobicity on froth stability and flotation performance were studied. The froth stability was measured in both the froth formation and froth decay processes by maximum froth height, froth half-life time and water recovery. The results show that fine particles of moderate hydrophobicity contributed most to maximum froth height in the froth formation process and were most favorable for flotation. Fine hydrophilic particles stabilized the froth in the froth formation process but the froth half-life time was very short due to the high water solid ratio. High hydrophobic particles of both fine and coarse size fractions greatly increased the froth half-life time in the froth decay process. But the froths were very rigid and the maximum froth heights were very low. The presence of fine hydrophobic particles was very unfavorable for the recovery of coarse particles.  相似文献   

2.
Coarse particles are more difficult to float. One of the factors that contributes to poor floatability is the stability of froth. The froth formed in industrial flotation cells is typically not strong enough to provide adequate support for coarse and dense particles. The present study investigates how the presence of hydrophobic submicron particles at low concentration increases the recovery of relatively coarse particles through improvement in the froth stability. Silica particles with d80 of approximately 230 μm were floated in a laboratory mechanical flotation cell in a collector-free environment in the presence of poly(propylene glycol) 425 as a frothing agent. The hydrophobicity of the feed particles was modified through an esterification process with different alcohols ranging from 3 to 8 hydrocarbon groups to form a coating of intermediate hydrophobicity. Hydrophobised silica submicron particles of 300 nm in size were added to the flotation cell at 0.01 and 0.1 wt% concentration. The effect of electrolyte, sodium chloride, in the concentration range 10−5–10−1 M on the recovery of coarse particles was also investigated. For the feed employed, 1-butanol was found to provide relatively good flotation properties with a possibility for improvement by stabilising the froth phase. Both additives slightly stabilised the froth phase, which resulted in an increase in the maximum recovery of up to approximately 8%. It appeared that the additives had no significant effect on the first-order flotation rate constant.  相似文献   

3.
The froth phase serves an important role in upgrading the final concentrate in flotation. At present, the techniques that are used in the mineral industry to determine the effect of froth phase on the metallurgical performance of plant scale flotation cells have limitations.The aim of this paper is to investigate the performance of the froth in an industrial flotation cell. A unique device has been developed which is able to decouple the froth zone from the pulp zone. The device consists of two concentric tubes. The inner tube acts as a dropback collection chamber or catcher. The particles that return from the froth phase fall directly into the catcher and are collected as froth dropback. This technique is capable of measuring plant scale flotation cell froth recovery as well as providing valuable information on froth dropback particles.The froth recovery measurements were carried out in a rougher bank of a copper concentrator treating sulphide minerals. The dropback device is designed so that it can be immersed into an industrial size flotation cell and plant froth recovery measurements can be taken at any given location. During the experiments, the bubbles laden with valuable mineral particles entered the device from the flotation cell, subsequently rising to form a froth layer at the top of the device. The particles that detached or drained from the froth zone were collected in the dropback collection chamber whereas the concentrate sample was collected through a launder. By sizing and chemical analysis of the concentrate and dropback samples, the froth recovery was estimated on the basis of the valuable component. The effect of air rate on the froth recovery was also investigated. Metallurgical grades of the froth dropback device samples for different particle size ranges were compared to those of the concentrator to better understand the froth dropback mechanism.  相似文献   

4.
细粒矿物浮选过程中,亲水的脉石矿物泡沫夹带进入精矿中,导致精矿品位降低。揭示泡沫排液及排脉石过程中的相关理论,可以为浮选泡沫结构及泡沫夹带行为的研究提供理论基础。浮选过程中的脉石泡沫夹带是一种普遍现象,脉石夹带回收率与精矿水回收率呈线性关系;两相泡沫排液受重力、毛细作用力(表面张力)、黏滞力控制,不同含液率的两相泡沫排液遵循不同的排液公式;三相泡沫的排脉石过程遵循对流—扩散模型,脉石的夹带回收率受三相泡沫排液速率及脉石颗粒浓度分布控制。浮选操作条件、亲水脉石的特性、矿浆特性以及泡沫结构是影响泡沫夹带的主要因素;优化浮选操作条件,改变浮选流程结构和改变药剂制度可以有效降低脉石的泡沫夹带,提高浮选选择性。未来,还需开发表征浮选三相泡沫特征的方法、装置或仪器,三相泡沫的结构及形态、疏水矿物颗粒与亲水脉石颗粒在泡沫中的运动路径及分布规律、浮选三相泡沫排液及排脉石的数学模型还需要进一步的细致研究。另外,降低脉石泡沫夹带的技术对于部分浮选体系虽有一定效果,但脉石的泡沫夹带尚难以消除,须开发一些革命性的技术。  相似文献   

5.
In batch flotation tests conducted on ores from the Merensky reef, changes in froth stability invariably occur with variations in the reagent suite. The main reagents are collectors (primary and secondary), activators, depressants and frothers. Since the particles entering and leaving the froth in a batch flotation system are continuously changing, the stability of the froth can vary. Under these conditions the simplest measure of froth stability is the measure of water recovery at a fixed froth height. The batch flotation system developed at UCT allows for the separation of gangue which is entrained relative to gangue which is floated. It has been found that the presence of naturally floatable gangue (NFG) leads to froth stabilisation, whereas the presence of hydrophobic sulfide minerals may lead to destabilisation of the froth depending on the hydrophobicity (contact angle) of the sulfide minerals. This can vary with ore type since particle shape and amount of particles present can influence the extent of destabilisation. At low depressant dosages sodium isobutyl xanthate (SIBX) always results in lower froth stability than sodium ethyl xanthate (SEX). The frothing nature of dithiophosphate leads to increased froth stability and the addition of copper sulfate results in destabilised froths. Increasing depressant dosage reduces the stabilising influence of NFG and the depressant type (guar gum or CMC) also affects froth stability. Frother can be used in an attempt to overcome the destabilising effects of high depressant dosage. This work examines the effect of variations in the reagent suite and uses water recovered at a fixed froth height as an indication of froth stability in order to analyse these effects on the recovery of sulfide minerals, floatable gangue and entrained gangue.  相似文献   

6.
Zircon mineral solids concentrated from Athabasca oil sands froth treatment tailings were compared by X-ray photoelectron spectroscopy, infrared spectroscopy, and collector-assisted froth flotation before and after surface cleaning in a low temperature, radio-frequency oxygen plasma. Plasma cleaning was effective at removing a surface bound layer of organic matter having chemical markers consistent with bituminous fractions. Specifically, the observation of long-chain aliphatics, ester and ether linkages, aromatic indicators, and hydroxyls in the absence of carboxylic acid groups, suggested the surface organic layer was representative of asphaltene or resin. Supporting this interpretation was the identification of pyrrolic and thiophenic chemical states. Plasma degradation of the hydrocarbon component transformed the zircon particles from hydrophobic to hydrophilic as evidenced by their recovery in water/ethanol froth flotation tests. The cleaned zircon particles were subsequently collected in the froth using dodecylamine. This work explains the surface conditions responsible for the reporting of zircon to the froth treatment tailings and demonstrates the efficacy of plasma cleaning as a means to condition zircon for coupling with collector agents. A physical model of surface adsorption is discussed and process implications are considered.  相似文献   

7.
《Minerals Engineering》2006,19(6-8):687-695
The selectivity in flotation columns involving the separation of particles of varying degrees of floatability is based on differential flotation rates in the collection zone, reflux action between the froth and collection zones, and differential detachment rates in the froth zone. Using well-known theoretical models describing the separation process and experimental data, froth zone and overall flotation recovery values were quantified for particles in an anthracite coal that have a wide range of floatability potential. For highly floatable particles, froth recovery had a very minimal impact on overall recovery while the recovery of weakly floatable material was decreased substantially by reductions in froth recovery values. In addition, under carrying-capacity limiting conditions, selectivity was enhanced by the preferential detachment of the weakly floatable material. Based on this concept, highly floatable material was added directly into the froth zone when treating the anthracite coal. The enriched froth phase reduced the product ash content of the anthracite product by five absolute percentage points while maintaining a constant recovery value.  相似文献   

8.
Increasing the upper size limit of coarse particle flotation has been a long-standing challenge in the minerals processing industry. The HydroFloat separator, an air-assisted fluidised-bed separator, has been used in this study to float 250–1180 μm sphalerite particles in batch flotation tests and compared to results achieved utilizing a laboratory-scale conventional Denver cell. The quiescent environment within the HydroFloat cell significantly reduces the turbulent energy dissipation within the collection zone, hence decreasing the detachment of particles from bubbles during flotation. Three operating parameters including bed-level, superficial water and gas rates have been studied, and their effect on the flotation of coarse sphalerite particles is reported. It is shown that coarse sphalerite recovery increases with increasing bed-level, superficial water and gas flow rates. However, there are thresholds for each operating parameter above which recovery starts to decrease. A comparison of recovery with a conventional Denver flotation cell indicates that the HydroFloat separator vastly outperforms the conventional flotation machine for the very coarse particles (+425 μm), and this is mainly attributable to the absence of turbulence and the minimization of a froth zone, both of which are detrimental to coarse particle flotation.  相似文献   

9.
为更好地揭示并合理利用浮选过程中细粒脉石的泡沫夹带与充气量的内在联系,采用自制的泡沫特性测试系统,模拟了浮选中充气量对泡沫的特性及脉石的泡沫夹带行为的影响规律。结果表明:在两相体系中,充气量的增大会明显降低泡沫层中气泡的兼并速度,增大泡沫的含液率及泡沫柱表观液流速度,显著提高泡沫水回收速率;在三相体系中,充气量的增大会显著降低泡沫中脉石的回流速度,显著提高顶部泡沫层的脉石质量分数。因此,在浮选过程中,在保证精矿有效回收的前提下,控制充气量是有效控制精矿泡沫夹带脉石的有效手段。  相似文献   

10.
We conducted an experimental study to investigate the behaviour of hydrophobic particles in the froth phase of a laboratory column. A stable froth was formed by passing the air through a porous disk into the liquid containing frother. Individual bubbles were loaded with hydrophobic particles separately in a fluidised bed and allowed to rise into the froth layer. Particles dislodged from the froth were collected and measured. The effect of collector concentration and superficial gas velocity on the detachment of particles from the froth was studied. The results showed that fraction of particles detaching from the froth decreases exponentially with increase in the collector concentration and increases slightly with superficial gas velocity. In general, low froth dropback values were obtained for the conditions studied in the present system which are considerably lower than the previously reported values.  相似文献   

11.
This research addresses two important issues confronting coal flotation plants in Australia, the use of saline water and the processing of clayey coal. Two coal samples obtained from BHP Billiton Mitsubishi Alliance (BMA) and Xstrata were tested to represent coarse coal flotation and fine coal flotation, respectively. Saline water with low, medium and high ionic strengths and individual electrolytes encountered in the flotation plants were used. It was found that saline water had a more pronounced effect on fine coal flotation than coarse coal flotation despite similar mineral compositions and clay mineral types present. Although saline water increased froth stability in both fine and coarse coal flotation, coal particle aggregation only occurred between fine coal particles resulting in an increased recovery of coal particles as well as the entrapment of fine gangue minerals.  相似文献   

12.
粗细粒级差异化给矿对浮选柱选别性能的影响   总被引:1,自引:1,他引:0  
粗细粒级矿物具有不同的浮选特性,浮选柱主要应用于精选作业的细粒级矿物分选,对粗颗粒矿物回收率较低,限制了浮选柱的应用。在泡沫层分选理论的基础上,以纯石英矿物(纯度大于99%)为代表矿样,将其分成150~280μm和-15μm粗细粒级两个组分,采用Ф100 mm×2 000 mm浮选柱开展试验考察粗细粒级差异化给矿对选别性能的影响。在一个试验中将粗细粒级矿物混合给入浮选柱泡沫层之下进行常规浮选,在另一个试验中将粗细粒级矿物差异化给入浮选柱泡沫层之上和泡沫层以下分别进行泡沫层分选和常规浮选。试验对比结果表明,粗细粒级差异化给矿提高了浮选柱精矿回收率,对粗颗粒矿物回收效果提升更为显著。  相似文献   

13.
Froth recovery was calculated in a 130 m3 mechanical cell of a rougher flotation circuit. This was done by bubble load determinations along with mass balance surveys. Valuable grade in the bubble load decreased in the −38 μm due to fine particles entrained to the chamber of the device. The effect of fine particle entrainment on froth recovery was evaluated. A comparison between results from the raw bubble load data (assuming all particles were transported by true flotation) with those from corrected bubble load information (subtracting fine particle entrainment) was carried out. Entrainment occurred due to hydraulic transport in the bubble rear, which corresponds to the worst case scenario for froth recovery estimation. Results showed that the relative error was less than 0.3%, which allowed validation of the bubble load measurement as an effective methodology for froth recovery estimation at industrial scale.  相似文献   

14.
Copper sulphate is used as an activator in the flotation of base metal sulphides as it promotes the interaction of collector molecules with mineral surfaces. It has been used as an activator in certain platinum group mineral (PGM) flotation operations in South Africa although the mechanisms by which improvements in flotation performance are achieved are not well understood. Some investigations have suggested these changes in flotation performance are due to changes in the froth phase rather than activation of minerals by true flotation in the pulp zone. In the present study, the effect of copper sulphate on froth stability was investigated on two PGM containing ores, namely Merensky and UG2 (Upper Group 2) ores from the Bushveld Complex of South Africa. Froth stability tests were conducted using a non-overflowing froth stability column. Zeta potential tests and ethylenediaminetetraacetic acid (EDTA) tests were used to confirm the adsorption of reagents onto pure minerals commonly found in the two ores. The results of full-scale UG2 concentrator on/off copper sulphate tests are also presented. The UG2 ore showed a substantial decrease in froth stability in the order of reagent addition: no reagents > copper > xanthate > copper + xanthate, while Merensky ore showed a slight decrease. It was shown through zeta potential measurements that copper species were to be found on plagioclase, chromite, talc and pyrrhotite surfaces and through EDTA extraction that this copper was in the form of almost equal amounts of Cu(OH)2 and chemically reacted copper ions on the Merensky and UG2 ore surfaces. In certain cases, the presence of copper sulphate and xanthate substantially increased the recovery, and therefore the implied hydrophobicity, of pure minerals in a frothless microflotation device. It was, therefore, proposed that increases in hydrophobicity beyond an optimum contact angle for froth stability, were the cause of instabilities in the froth phase and these were found to impact grade and recovery in a full-scale concentrator. Differences in the extent of froth phase effects between the different ores can be attributed to differences in mineralogy.  相似文献   

15.
《Minerals Engineering》2003,16(10):975-982
The improved selectivity between particles of varying degrees of hydrophobicity in flotation froths has been well documented in literature, especially in the deep froths utilized in flotation columns. The phenomenon is believed to be due to the selective detachment process whereby the least hydrophobic particles are released from the bubble surface upon bubble coalescence. To quantify the selective detachment process, column flotation experiments were performed under various operating conditions that provided varying amounts of reflux between the froth and collection zones. Entrainment was eliminated by the use of relatively coarse 250 × 75 micron material. The flotation column incorporated the ability to provide instantaneous stoppage of the process streams and separation between the collection and froth zones after ensuring steady-state operation of the column. The samples collected from the two zones and process streams were evaluated to quantify the flotation rate distribution of the particles comprising each sample. The flotation rate was used as an indicator of the degree of hydrophobicity and thus a relative measure of the binding force between the particle and bubble in the froth zone. The flotation rate data was used as input into well known flotation models to obtain the froth zone recovery rate and the quantity of material that refluxes between the collection and froth zones.  相似文献   

16.
Recent research progress in hard rock mineral flotation shows that froth stability can be represented by air recovery, which is defined as the fraction of air entering a flotation cell that overflows the weir in unburst bubbles, and that air recovery has strong correlation with the separation performance of mineral flotation. Yet no experimental work on air recovery has been devoted to coal flotation. This paper studies air recovery in coal flotation and examines the links between air recovery, froth stability and coal flotation performance. A series of experiments were conducted using a laboratory-scale mechanical flotation cell at various methyl isobutyl carbinol (MIBC) concentrations and aeration rates. It was found that air recovery has a strong correlation with dynamic froth stability determined by measuring the maximum froth height in a non-overflowing froth column. At a fixed aeration rate (hydrodynamic condition) and various MIBC concentrations, a strong correlation between air recovery and coal flotation performance was also observed.  相似文献   

17.
In this work, the effect of a froth baffle on flotation performance is investigated both experimentally and numerically. Flotation experiments with an artificial ore comprised of 80% silica as gangue and 20% limestone as floatable component were carried out to compare the flotation performance of a baffled froth system against an un-baffled froth system. The effect of the baffle’s inclination angle to the horizontal was also studied. Results indicated that a froth baffle has a profound effect on both recovery and grade. The presence of a froth baffle resulted in an increase in grade at the expense of recovery. The decrease in limestone recovery with the introduction of a froth baffle was found to be a function of the baffle’s inclination angle i.e. recovery decreased as the inclination angle becomes more acute. Water recovery as well as entrainment recovery herein represented by silica recovery decreased with decrease in baffle’s inclination angle. Numerical techniques were employed to model the experimental results. The 2D stream function equation/Laplace equation which is known to be adequate in describing froth transport was solved subject to boundary conditions that represent the presence of baffles. A solution was developed using finite difference methods on a rectangular map obtained using Schwarz–Christoffel (SC) mapping. Results from the simulations indicated a change in particle residence time distribution in a manner that reduces spread. The changes in residence time distribution helped in developing an explanation of the experimental data.  相似文献   

18.
In principle, carrying out flotation of coarse and composite particles in a quiescent flow field is decisive to prevent particles detaching from bubbles. To overcome or limit detachment of coarse composite particles from bubbles in flotation, a fluidised bed separator, the HydroFloat™, which provides a quiescent environment has been used, and the results compared to the performance of a mechanical (Denver) cell. Model synthetic composites of quartz (value mineral) in lead borate (gangue) matrix with simple and complex locking texture were used for the study. The flotation behaviour of particles with different locking textures was studied at a coarse size distribution of 250–600 μm in both the HydroFloat separator and the Denver cell. The recovery of composite particles with the different locking textures was analysed on an un-sized and size-by-size basis. Recovery was improved in the HydroFloat separator, with both simple and complex locking composite particles having almost the same recovery. Again, comparison of recovery with the HydroFloat to the Denver cell indicates that the separator greatly out-performs mechanically agitated cells for the upper particle size of about 500 μm, with a significant effect on complex locking texture composites. This is attributed to the minimum or absence of turbulence and minimal froth zone which causes detachment of coarse particles in most conventional cells.  相似文献   

19.
《Minerals Engineering》1999,12(7):721-731
Flotation processes occurring in the bulk and froth phases have a characteristic influence on the structural features and dynamics of the flotation froth. It is recognized that the structure and texture of a mineral froth is a good indicator of flotation separation performance. The surface froth feature and dynamics are presented by three features extracted from the digitized images of the froths, i.e. SNE, a rough indication of the average bubble size of the froth, froth stability and the average grey level of the froth, an indication of mineral loading. Particle size is an important parameter in flotation operation. Nowadays, particle size is often measured and controlled in flotation concentrators. In this study the dependence of the froth structures on the particle size variation was investigated on the batch flotation of a sulfide ore from the Merensky reef in South Africa, and the size by size recovery curves were studied as well. In general medium particles produced bubbles smaller than those observed in the presence of fine and coarse particles, and the recovery rates were larger. Entrainment was a contributory mechanism to the recovery of fine particles. The fluctuation of flotation indices on the particle size change can be diagnosed and predicted by the froth structures change with a high degree of accuracy.  相似文献   

20.
分别将0.074 mm粒度以下的低密度(-1.4 g/cm3)、中间密度(1.4~1.8 g/cm3)和高密度(+1.8 g/cm3)细粒煤泥掺入到粗粒煤泥中进行浮选试验,研究不同密度细粒煤泥对粗粒煤泥浮选产率的影响,通过AFM测定低密度、高密度细粒煤泥颗粒与低灰粗颗粒煤之间的作用力,采用SEM观察浮选精煤、尾煤中粗颗粒煤的表面形貌,结合EDLVO理论对其影响机理进行了探讨。结果表明:中间密度细粒煤泥对粗粒煤泥浮选的抑制作用最大,低密度细粒煤泥次之,高密度细粒煤泥最小;粗粒煤泥的粒度越大,其浮选产率受中间密度细粒煤泥的影响越严重;AFM测定的作用力-距离曲线证实了疏水作用力的存在,颗粒疏水性越强,颗粒间的疏水力越大;通过SEM观察发现中间密度细粒煤泥在粗粒煤泥表面的罩盖现象显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号